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Section S1. Sample characterization 

 

In order to characterize our sample, i.e., graphene disks, we measured the transmission spectrum at 10 K 

using Fourier-transform infrared spectrometer. Figure S1 (a) shows the transmission spectrum of 

graphene disks. We confirmed that the plasmon resonance frequency ωp is located at 3.5 THz. To 

analyze further, we fitted the transmission spectrum using equivalent sheet conductivity σ, given by1,2: 
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where f, D, and Γ are the filling factor, Drude weight, and scattering rate, respectively. The extracted 

parameters from the transmission spectrum (D and Γ) and related values calculated from extracted 

parameters are summarized in Table S1.  

 

 

Symbol Name Value 

R Disk radius 0.6 μm 

Λ Disk Periodicity 1.5 μm 

f=πR2/Λ2 Filling factor 0.5 

D Drude weight 1.2∙1011  Ω-1s-1 

vF Fermi velocity 108 cm s-1 

e Elementary charge 1.6∙10-19 C 

n=(Dħ/e2vF)2/π Carrier concentration 7.83∙1012 cm-2 

Γ Scattering rate 9.31∙1012 s-1 

ωp Plasmon frequency 3.5 THz 

 

 

Table. S1: Extracted parameters from the fitting result on the transmission spectrum. 



 

Section S2. Derivation of optical conductivity tensor 

 

The optical conductivity tensor σ for a graphene disk array can be obtained by using a simple harmonic 

oscillator in a magnetic field3, which gives coupled differential equations: 

 

 
ẍ+Γẋ+ωp

2x=eE0eiωt+ωcẏ (S2) 
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where ωp, Γ, ωc, and E0 are the plasmon frequency at zero magnetic field, scattering rate, cyclotron 

frequency, and the strength of applied electric field. As general solutions for Eq. S2 and S3, we set as: 
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By inserting Eq. (S4)-(S5) into (S2) and (S3), the coefficients A1 and A2 can be obtained. The full 

expressions of x and y are given by: 
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Fig. S1: (a) Transmission spectrum of graphene disks. Symbols and line show the experimental 

data and the fitting result, respectively. (b) Geometry of the graphene disk as used for the 

COMSOL simulations. 
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The electric current J is defined as J=nev where n, e, and v are the carrier density, electric charge, and 

the drift velocity, respectively. And each component of v for x and y directions can be obtained by 

differentiation with respect to time t which are: 
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where E is the unit electric field of E=E0∙e-iωt. In order to obtain σxy, we used the relation between the 

electric current and the applied electric field: 

 

 
(

Jx

Jy

) =
1

√2
(

σxx

-σyx

σxy

σyy

) (
Ex

Ey

) (S10) 

We only apply the electric field in the x-direction thus Ey=0. Thus, we can obtain the relations of 

Jx=σxxEx/√2 and Jy=-σyxEx/√2. From these relations, we can finally obtain σxx and σxy as: 
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Here, D is the Drude weight. Since graphene disks are array structures, we inserted the filling factor f 

to compensate for the effective area of graphene.  

 

Section S3. Interpretation of the sign crossover of Faraday rotation 

 

 

In this section, we discuss the sign crossover of Faraday rotation θF as a function of frequency. For 

example, the sign of θF is changed from positive to negative with the onset frequency of around 1.5 THz 

in the case of unpatterned graphene with the magnetic field being 1 T (see Fig. 1d in main manuscript). 

We interpret that this crossover is related to the phase delay between the driving electric field and the 

motion of electrons. In more detail, no phase delay occurs at low frequency, close to the direct current 

regime, whereas the phase delay of the charge carrier motion increases with frequency and eventually 

the direction of electron displacement becomes phase shifted by 180° with respect to the driving electric 

field. To quantify this effect, we considered the complex Drude optical conductivity of graphene σ under 

the magnetic field enviorment4.  
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We used parameters in Eq. S13 from Table S1. The complex magnetic-field-dependent Drude optical 

conductivity is provided in Fig. S2(a) and (b). In order to consider the absorption and reemission process, 

we considered the dipole radiation process. In this radiation process, the phase of the position of charge-

carriers plays a crucial role. The relative phase information φ between the incident light and the position 

of carriers can be extracted from Eq. S13 and it is given by: 

 φ= tan-1 (-Γ∙
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The extracted phases depending on the magnetic field are shown in Fig. S2(c). As can be seen, the phase 

shift is zero for lowest frequencies, contrasting to AC region where the imaginary part of σ has non-

zero values. And, one can observe that the phase exceeds 90 degrees upon increasing the frequency, 

suggesting that the oscillating displacement becomes opposite compared to the incoming light wave.  

 

Considering the extracted phase between electron displacement and incident electric field E, we 

computed the trajectories of electrons under the magnetic fields B by solving coupled equations, as: 
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Fig. S2: (a) Real and (b) imaginary part of complex Drude optical conductivity of graphene σ under the 

magnetic field. (c) Relative phase difference φ between the incident light the position of charged 

carriers. 



where m* is the effective mass of electrons. The Electric E and magnetic B fields are set to be applied 

to z and x directions, respectively (See. Fig. S3(a)).  

 

  

Figure S3 (b) shows the calculated trajectories of electrons after 1 ps. For this calculation, we set 

strengths of electric and magnetic fields as 1 V m-1 and 1 T, respectively. Note that the corresponding 

ωc to 1 T is about 0.5 THz for this calculation. One can observe that the trajectories of electrons become 

opposite based on around 0.5 THz. It implies that the phase difference between the incoming electric 

field and the motion of electrons plays a crucial role in the determination of the trajectories. From 

obtained trajectories, we extracted θF, provided in Fig. S3(c). For the direct comparison to experimental 

data shown in Fig. 1d (main manuscript), we adjust the amplitude of θF using the amplitude of complex 

optical conductivity (Eq. S13) as the scale factor which allows us to consider the absorption of the 

incident light. Altogether these observations allow us to conclude that the sign crossover originates from 

the phase shift between the electric fields and the motion of electrons on graphene. Note that this 

simplistic approach is only meant to help interpreting the change in sign and is not a complete 

description of the Faraday rotation. 

 

Fig. S3: (a) Geometry of calculation. (b) Trajectories of electrons. Frequency is varied from 0.05 THz to 

2.5 THz (c) Extracted Faraday rotation the trajectories of electrons.   



Section S4. Circularity of pump beam 

 

We observed the sinusoidal oscillation upon varying the angle of wire-grid polarizer, suggesting that 

our FEL pump beam passing through λ/4 plate is not perfectly circular. In order to quantify the 

circularity, we fit our experimental data with sinusoidal function of: 

 Amplitude=A0sin(2ϑ+φ)+B0 (S17) 

where A0, ϑ, φ, and B0 are the coefficient of sine function, the angle of wire-grid polarizer, phase shift, 

and offset value. From the fitting, these parameters turn out A0=0.0024, φ =49o, and B0=0.016. The 

information of circularity can be obtained by dividing B0 from A0, manifesting the fact that our 

circularly polarized pump beam contains 15 % of the linearly-polarized component.  

Fig. S4: Amplitude change of circularly polarized pump beam as a function of the rotation angle for wire-

grid polarizer.    



 

 

Section S5. Temperature dependent pump beam induced Faraday rotation 

 

Figure S5 shows the circularly-pump induced Faraday rotation θF as a function of temperature. 

Temperature was varied from 10 K to 300 K. All notation in Fig. S5 is the same as the main manuscript. 

One can confirm that θF is still observable even at room temperature. Input fluence was set to 110 nJ 

cm-2. 

 

Section S6. Change of polarization of probe beam by linearly polarized pump beam 

 

Fig. S5: Circularly polarized pump beam induced transmission change ΔT/T measured at bolometers of 

B1 (a) and B2 (b). Pump-beam is the left-handed circular polarization σ+ (d), (e) Corresponding data set 

to (a) and (b) with the right-handed circular polarization σ-. (c), (f) Extracted θF’s from σ+
 and σ-, 

respectively.  



To exclude that the observed θF originates from a pump-induced anisotropy caused by linearly polarized 

radiation (plasmonic nonlinearity)5, but the circular motion of the plasmonic current, we investigated 

the change of the polarization of the probe beam θp induced by the linearly polarized pump beam. 

Figures S6(a) and (b) show the linearly polarized pump beam induced transmission change ΔT/T as a 

function of the time delay Δt between the pump and the probe pulses. ΔT/T measured at the bolometer 

B2 exhibits larger changes than the corresponding data set measured at B1. This result implies that the 

polarization of the probe beam θp is rotated by the linearly polarized pump beam (see Fig. S6(c)). At 

the maximum fluence (420 nJ cm-2), θp is confirmed to be changed by 0.5 degrees. Considering the fact 

that our circularly polarized pump beam contains 15 % of the linear component, we can deduce 15 % 

of 0.5 degrees (0.075 degrees) could be caused by the linear component of the circularly polarized pump 

pulse. Thus, we can safely conclude that the plasmonic nonlinearity plays a negligible role in our 

experiment as the observed θF is more than ten times larger compared to θp at a comparable pump 

fluence.  

 

Section S7. Extraction of θF 

 

The wire grid polarizer used to separate the two linear polarization components is set to 45°, i.e. both 

orthogonal contributions have the same power. The transmission through the polarizer as a function of 

the polarization angle is in general described by the Cos2 between the electric field and the direction of 

the polarizer. When the polarization of the probe beam changes, the power for one bolometer increases 

Fig. S6: linearly polarized pump beam induced transmission change ΔT/T measured at bolometers of B1 

(a) and B2 (b). (c) Extracted changed polarization of probe beam θF. 



following the Cos2-law, while the second one decreases accordingly. Thus, the difference between the 

relative changes of both channels has to be divided by two. Equation S18 shows the equation exploited 

to determine the Faraday angle. Figure S7 shows the relation between θF and ΔT/T. 
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Fig. S7: Relation between ΔT/T and θF. 


