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The fast-evolving field of condensed matter physics is witnessing a rapid devel-

opment of a new class of materials, called Dirac materials. The low-energy electronic

excitation in these materials behaves like massless Dirac particles. These materials

exhibit unique optoelectronic properties, and understanding of Dirac quasi-particle

dynamics in two and three dimensions is imperative to realizing the potential ap-

plications.

In this dissertation, we study two prominent Dirac materials that have unique

optoelectronic properties: graphene (two-dimensional) and tantalum arsenide (three-

dimensional). While the former can be regarded as the father of materials with a

symmetry-protected Dirac spectrum, the latter is a more recent example of topology-

protected Dirac materials, also known as 3D Weyl semimetals. We employ spec-

troscopy and ultrafast optical techniques to study plasmons, and the interaction/relaxation

dynamics of photo-excited carriers in these materials.

More specifically, we study a new class of plasmon resonances in hybrid metal-

graphene structures, which is an important step towards practical graphene plas-



monic optoelectronic devices. In addition, we investigate the giant nonlinear THz

response of graphene plasmons using pump-probe techniques and discuss the physi-

cal origin of the plasmon-enhanced nonlinearity. Furthermore, we introduce a novel

continuous-wave photomixing spectroscopy technique to investigate the frequency

dependence and nonlinearity of hot-electron cooling in graphene. Finally, we explore

the relaxation dynamics of photo-excited Weyl fermions in tantalum arsenide via

ultrafast optical pump-probe techniques, which shed light on the electron-phonon

relaxation processes in this material.
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Chapter 1: Introduction

1.1 Graphene

Graphene, an allotrope of carbon with honeycomb lattice, is the first two-

dimensional material, discovered in 2004 [1–3]. During the past decade, graphene

has captured the attention of theoretical and experimental physicists alike who are

interested in the remarkable electrical, optical and thermal properties of this unique

atomically thin material [4, 5].

1.1.1 Graphene Plasmonics for Tunable Terahertz Optoelectronics

Among its many outstanding properties, graphene supports terahertz surface

plasma waves – sub-wavelength charge density oscillations connected with electro-

magnetic fields that are tightly localized near the surface [6, 7]. When these waves

are confined to finite-sized graphene, plasmon resonances emerge that are charac-

terized by alternating charge accumulation at the opposing edges of the graphene.

The resonant frequency of such a structure depends on both the size and the surface

charge density, and can be electrically tuned throughout the terahertz range by ap-

plying a gate voltage [8, 9]. Graphene plasmonics has the potential to revolutionize

1



terahertz technology the last great underdeveloped frequency band of E&M waves.

Tunable graphene plasmonic resonators have been suggested for use in terahertz

filters, modulators, detectors, and emitters, and could find widespread applications

in science, medicine, security, and communications [10–16].

1.1.2 Nonlinear Optical Response of Graphene

Graphene exhibits a broadband intrinsic nonlinear optical response [17, 18]

that has been used in mode-locking [19] and harmonic generation [20]. In the optical

and near-infrared regime, the nonlinear response of graphene is primarily attributed

to transient Pauli blocking, which leads to an ultrafast saturable absorption and

nonlinear refraction [21]. In the terahertz regime [22, 23], however, the nonlinear

response is primarily caused by fast thermal heating and cooling of the electron

population, which effects the intraband absorption [24–26].

1.1.3 Photothermoelectric Response and Hot-electron Cooling in Graphene

When graphene absorbs electromagnetic radiation, its electrons heat up and

produce a measurable thermoelectric response, even at room temperature. Be-

cause of graphene’s gapless dispersion relation, small electron heat capacity, and

anomalously weak electron-phonon coupling, this photothermal detection mech-

anism is broadband (from DC to visible), highly sensitive, and fast [13, 27–30].

The speed, temperature-, and power-dependence of these detectors depend criti-

cally upon how fast and by what mechanisms the hot carriers relax [31–33]. Two

2



primary cooling mechanisms have been identified: supercollision cooling, in which

disorder-assisted scattering allows for non-momentum-conserving transitions, and

conventional momentum-conserving electron-phonon cooling [31,32,34–39].

1.2 3D Dirac and Weyl Semimetals

Various electronic systems exhibit properties that can be well described by

the Dirac equation. In particular, three-dimensional (3D) Dirac semimetals have

recently been discovered as the 3D analogue of graphene having linear energy disper-

sion around Fermi points [40,41]. When either inversion or time reversal symmetry

is broken in such systems, the Dirac states are decomposed into pairs of Weyl states

in which the electronic states are chiral and singly degenerate [42–44]. Owing to the

nontrivial topology of electronic wave functions, Weyl semimetals exhibit new phys-

ical properties related to the Berry curvature associated with the Weyl points, and

novel quantum states such as Fermi arc surface states [42–47]. Since their discovery

in 2015 [48–50], Weyl semimetals have attracted tremendous amount of attention

as another rich direction to explore in topological condensed matter physics. While

they have been verified through ARPES and other surface probe experiments, their

other physical properties are just beginning to be examined.

1.3 Organization of Dissertation

We start chapter 2 with a brief introduction to graphene conductivity and its

optical response. After, we discuss plasmon modes in graphene, and plasmon res-
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onances of a simple structure of graphene ribbons. In particular, we present mea-

surements of plasmon resonances in graphene ribbons and describe theory models to

describe plasmonic response of such structures. Next, we study, through theory and

experiments, a new type of plasmon resonance that occurs when a graphene channel

is connected to conductive boundaries. This new plasmon mode resolves two out-

standing problems that have to date hindered the development of graphene-based

tunable plasmonic terahertz devices: (1) the incorporation of conducting metal

contacts to a tunable graphene plasmonic channel, and (2) the matching of sub-

wavelength graphene plasmonic resonators to free-space propagating waves, which

previously limited absorption to a few percent. Furthermore, we present an equiv-

alent circuit model for the fundamental mode of hybrid metal-graphene structure,

and also discuss the higher order plasmon modes in such structures.

In chapter 3, first, we show nonlinear pump-probe measurement results on

the plasmonic device of CVD graphene ribbons. In addition, we present a theory

that explains the observed plasmon-enhanced nonlinear response of graphene rib-

bons. Second, we measure the nonlinear plasmonic response of quasi-free-standing

bilayer graphene ribbons. Further, we discuss results of pump-probe measurements

at frequencies around the plasmon resonance. Finally, we employ the presented the-

ory to predict how the nonlinearity would be enhanced further using high mobility

HBN-encapsulated graphene.

Chapter 4 starts by introducing a new photocurrent spectroscopy technique

that uses mixing of two continuous-wave beams to study nonlinearity and frequency

response of photovoltage. We describe the two graphene photo-thermo-electric de-

4



vices investigated by the proposed photomixing technique. Next, we discuss the

measurements of carrier density dependence and difference-frequency dependence of

the photomixing signal, and, we present a nonlinear photo-thermo-electric model to

explain the observed data. At the end, we demonstrate how the difference frequency

dependence of photomixing signal changes with temperature.

In Chapter 5, first, we present a brief introduction to optical conductivity of 3D

Dirac semimetals. Second, we discuss the band structure and electronic properties

of the 3D Weyl semimetal tantalum arsenide (TaAs). Third, we present our pump-

probe measurement results on carriers dynamics and relaxation in TaAs. In addition,

we provide a qualitative thermodynamic model to describe the observed pump-

probe results. Based on the model, we extract the electron-phonon relaxation times

in TaAs from pump-probe data. At the end of chapter, we show the result of

temperature dependence pump-probe measurements.

Chapter 6 provides some potential future directions based on studies presented

in the dissertation.
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Chapter 2: Plasmons in Hybrid Metal-Graphene Structures

2.1 Overview

When a conductor is illuminated with light, its electrons can oscillate in collec-

tive motion called a plasmon resonance. In metals, these plasmons occur at visible

light frequencies, but in graphene the motion happens at much slower terahertz

frequencies, and the resonant frequency can be tuned by applying a voltage [6–9].

The promise of tunable graphene THz plasmonics has yet to be fulfilled, how-

ever, because most proposed optoelectronic devices including detectors, filters, and

modulators [11–16] desire near total modulation of the absorption or transmission,

and require electrical contacts to the graphene – constraints that are difficult to meet

using existing plasmonic structures. Until now, there was no experimental evidence

that two-dimensional plasmons could be confined with conductive boundaries.

In this chapter, we demonstrate a new type of plasmon resonance in metal-

contacted graphene, and we use analytic calculations, numerical simulations, and

THz reflection and transmission measurements to confirm the principle of operation.

These plasmon modes shows strong coupling to incident terahertz radiation, so that

maximal absorption in graphene can be achieved at a resonance frequency that is

gate-tunable. We also introduce an equivalent circuit model that predicts the res-
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onant frequency, linewidth, and impedance matching condition of the fundamental

plasmon mode, and can be used for designing graphene plasmonic metamaterials and

antenna coupled devices. We present predicted results for high mobility graphene

that show that a near 100% tunable resonant transmission can be achieved, giving

an ideal platform for THz modulators and tunable bandpass filters [51].

2.2 Optical Conductivity of Graphene

The contribution of intraband scattering of free carriers in graphene to its

optical conductivity is calculated as [52,53]

σintra(ω) = 2ie2kbT
ln [2 cosh (|µc|/2kbT )]

π~2(ω + iΓ)
(2.1)

where T is graphene electron temperature, µc is the chemical potential for

graphene carriers (electrons or holes), and Γ is carriers scattering rate. kb and ~ are

Boltzmann and Planck constant respectively.

For most of studies in this thesis, graphene carriers are in the degenerate

regime (|µc| � kbT ), and thus σintra(ω) in (2.1) can be approximated by a Drude

conductivity,

σintra(ω) =
ie2|EF |

π~2(ω + iΓ)
(2.2)

where EF is the Fermi level of carriers in graphene.

In the degenerate regime, and when ~ω � kT , the interband conductivity can

be approximated by [52–54]
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σinter(ω) =
e2

4~

[
H(~ω − 2µc)−

i

π
ln

(∣∣∣∣~ω + 2µc
~ω − 2µc

∣∣∣∣)] (2.3)

where H(x) is the Heaviside step function. The frequency-dependent graphene con-

ductivity σ(ω) is the summation of contributions from intraband (2.2) and interband

(2.3) electronic transitions,

σ(ω) = σintra(ω) + σinter(ω) (2.4)

=
ie2|EF |

π~2(ω + iΓ)
+
e2

4~

[
H(~ω − 2µc)−

i

π
ln

(∣∣∣∣~ω + 2µc
~ω − 2µc

∣∣∣∣)] (2.5)

Therefore, graphene conductivity can be specified by its carriers Fermi level and

scattering rate, or equivalently by the carrier density n ≡ E2
F/(π~2v2

F ) and mobility

µ ≡ evF/
√
πnΓ~ , where vF ≈ 1.1 × 106 m/s is the Fermi velocity of electrons in

graphene.

Fig. 2.1a plots the optical absorption of graphene A as a function of frequency

f calculated from (2.5) for EF=0.2 eV and Γ/2π = 2.67 THz. It is instructive

to break the A(f) plot into three different frequency regions: (i) Drude region:

the intraband carriers scattering, illustrated as a green arrow in Fig. 2.1b, causes

a strong Drude-like absorption of photons in DC and low THz frequencies, (ii)

Pauli blocking region (Γ/2π � f < EF/π~): Drude absorption is negligible and

also the interband transition is forbidden, due to the filled electronic states in the

conduction band (red arrow in Fig. 2.1b), (iii) interband region (f > EF/π~ ≈

97 THz): incoming photons cause interband transition of graphene electrons from

valence to the conduction band (blue arrow in Fig. 2.1b). This results in a frequency-

8



independent absorption of Ainter ≈ Z0e
2/4~ (Z0 ≈ 377 Ω: free-space impedance)

which depends only on fundamental constants in physics and is Ainter ≈0.023 [54].

We note that the conductivity in THz frequencies, that concerns most of the

work in this thesis, are dominated by the intraband Drude contribution (2.2).
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Figure 2.1: (a) Calculated graphene absorption at T = 0, as a function of frequency

for EF=0.2 eV and Γ/2π = 2.67 THz. The three different frequency regions (Drude,

Pauli blocking, and interband) are separated by dashed lines. (b) Three electronic

transitions concerning the three frequency regions shown in part a.

In Fig. 2.2, we plot graphene absorption as a function of frequency for different

Fermi levels. As EF increases, low-frequency Drude absorption increases, and the

interband edge shifts to a higher frequency. An attractive feature of graphene as

a two-dimensional conductor is the tunability of Fermi level via applying an out of

plane electrostatic field. This scheme is illustrated in the inset of Fig. 2.2 where a

gate voltage Vg is applied between graphene and a conductor separated by a gate

dielectric to change the graphene carrier density. Therefore, graphene absorption
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can be readily altered by a gate voltage, an advantageous effect for various opto-

electronics device applications from THz to visible frequency range.
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EF = 0.1 eV
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A 

Figure 2.2: Graphene absorption vs frequency for different EF . The inset illustrates

the electrostatic gate-tunability of the graphene Fermi level.

2.2.1 Optical Properties of a Thin Conductive film

In this section, we present a simple model to calculate optical properties of a

two-dimensional film using its conductivity. When a linearly polarized plane wave is

normally incident on a two-dimensional conductive sheet, the transmission, reflec-

tion, and absorption can be described using a simple transmission-line model shown

in Fig. 2.3.

In this model, the incident and substrate regions are modeled as transmission

lines with characteristic impedances of Z1 ≡ Z0/
√
ε1 and Z2 ≡ Z0/

√
ε2, respectively,

and the two-dimensional sheet is modeled with a frequency-dependent lumped con-
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Z Y(ω)  1 = ε1

Z0 Z2 = ε2

Z0E1
(+)

E1
(–)

E2
(+)

E2
(–)

Figure 2.3: Transmission line model of reflection, transmission and absorption in a

conductive sheet.

ductance σ(ω).

The relationship between the amplitudes of the incoming and outgoing wave

amplitudes can be described by a scattering matrix,E
(−)
1

E
(+)
2

 =

S11 S12

S21 S22


E

(+)
1

E
(−)
2

 (2.6)

For the circuit model shown in 2.3(a), the scattering matrix is calculated to be:S11 S12

S21 S22

 =
1

Y1 + Y2 + Y (ω)

Y1 − Y2 − Y (ω) 2Y2

2Y1 Y2 − Y1 − Y (ω)

 (2.7)

where Yi = 1/Zi and Y (ω) is the complex admittance (effective conductivity) of the

thin film.

For waves incident from region 1, the reflection, transmission and absorption

are calculated to be

R(ω) = |S11|2 =

∣∣∣∣Y1 − Y2 − Y (ω)

Y1 + Y2 + Y (ω)

∣∣∣∣2 (2.8)

T (ω) =
Y2

Y1

|S21|2 =
4Y1Y2

|Y1 + Y2 + Y (ω)|2
(2.9)

AG(ω) = 1−R(ω)− T (ω) =
4Y1 Re

{
Y (ω)

}
|Y1 + Y2 + Y (ω)|2

(2.10)
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These relations describe the absorption, transmission, and reflection from a

thin film with normally incident radiation.

To model the optical response of a plane graphene sheet, graphene can be

described by a Drude conductivity

1

σ(ω)
=

(1− iω/Γ)

σ0

= RG − iωLG (2.11)

where σ0 ≡ neµ represents the DC sheet conductivity of a graphene layer with

carrier concentration n and mobility µ, and Γ ≡ evF/~µ
√
πn is the scattering rate.

From (2.11), the graphene may be modeled by its ohmic resistance, RG = σ−1
0 , in

series with its kinetic inductance, LG = (σ0Γ)−1 [55].

Z1 = ε1

Z0 Z2 = ε2

Z0

R 

LR   (ω)
T   (ω)

Figure 2.4: Equivalent circuit for Drude absorption by an unpatterned graphene

sheet on a substrate.

This model correctly predicts the Drude absorption, reflection, and transmis-

sion in the terahertz regime. The transmission line model presented in this section

can be generalized to multilayer and finite-thickness substrates by adding additional

finite-length transmission line segments.
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2.3 Plasmon Resonances in Graphene Ribbons

2.3.1 Overview

Graphene supports strongly confined surface plasmon waves in THz/mid-IR

frequencies [6–8, 56]. The plasmon wavelength can be 2-3 orders of magnitude

smaller than the free space wavelength, leading to a strong field localization at the

plasmon resonance frequency [57]. When the graphene surface is patterned to sub-

wavelength structures with dielectric boundaries, standing wave plasmon resonances

emerge where electrons collectively oscillate within the subwavelegnth graphene ele-

ments [8,9]. In this section, we discuss properties of the fundamental (first) plasmon

resonance in a single and array of graphene ribbon(s).

2.3.2 Dispersion of Graphene Plasmons

We assume that graphene is placed at the interface of two dielectrics with

dieletric constants of ε1 and ε2. Considering a Drude model for graphene conduc-

tivity (2.2), the dispersion relation for plasmons in graphene ωp(k) is calculated

from [56]

ωp(ωp + iΓ) ≈ e2EF
2π~2ε0ε̄

k (2.12)

where ε̄ = (ε1 + ε2)/2. To obtain (2.12), we assumed that |k| � ω
√
ε̄/c (non-

retarded approximation), which is valid for graphene plasmons in a wide range of

frequency [56, 58]. If we ignore the loss in graphene and only focus on the real
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part of k (Re k ≡ q) in (2.12) which determines the plasmon frequency, and use

EF = ~VF
√
nπ, we obtain the following

ω2
p ≈

e2vF
2
√
π~ε0ε̄

√
nq (2.13)

This equation demonstrates two distinguished properties of plasmons in a two-

dimensional conductor: (1) square-root dispersion relation, and (2) n1/4 carrier

density dependence of the plasmon frequency [8, 56].

2.3.3 Plasmon Resonance Frequency of Graphene Ribbons

Now we use (2.13) to find an approximate expression for frequency of the

first plasmon resonance in a graphene ribbon with width w and lateral dielectric

boundaries. To a zeroth approximation, one expects that the first plasmon resonance

is a dipole mode of the graphene ribbon, and one can find the resonance frequency

by placing q = π/w in (2.13). However, this is a crude approximation that requires

modifications, because the electric field at the graphene boundary is not necessarily

zero and can extend into the dielectric boundaries. To account for this, we can still

use the dipole approximation, but phase term φ needs to be added to the reflected

plasmon wave from dielectric boundary, which reulsts in an effective wave vector of

q = (π − φ)/w [59, 60]. For an isolated graphene ribbon, we find empirically that

φ ≈ π/4 [59,61], and from (2.13), one finds the plasmon frequency ωribbon of

ω2
ribbon =

3
√
π

8

e2vF
~ε0ε̄

√
n

w
(2.14)

For an array of graphene ribbons, the electric field extends even further beyond

14



the ribbon due to the dipolar coupling of adjacent ribbons [59, 62]. This results in

a reflection phase of φ > π/4, and thus a red-shifted plasmon resonance compared

to an isolated ribbon. In [60], authors calculate φ as a function of ribbon width

and array period, which can be placed in the following to calculate the resonance

frequency

ω2
ribbons−array =

π − φ
2
√
π

e2vF
~ε0ε̄

√
n

w
(2.15)

2.3.4 Drude Lorentz Model

In this section, we present an equivalent circuit model to approximate the

optical properties of the first plasmon mode in an array of graphene ribbons.

When a conductor is patterned into an array of ribbons with period Λ and

width w, it forms a capacitive grid that can be modeled by a sheet capacitance

of [63]

C = 2ε0ε̄Λ ln[sec(πw/2Λ)]/π (2.16)

where ε̄ ≡ (ε1 + ε2)/2 is the average dielectric constant. Accounting for the sheet

resistance and kinetic inductance of the graphene that comprises the ribbons, the

equivalent sheet impedance may be modeled by a resistor, capacitor and inductor

in series, as shown in Fig. 2.5 [64]:

Z(ω) = RG
Λ

w
+ iωLG

Λ

w
− i

ωC
(2.17)

where RG and LG are the graphene sheet resistance and kinetic inductance,
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and the additional factor of Λ/w accounts for the filling fraction of the graphene.

Defining the Drude weight as D ≡ πΓσ0, and using the expressions for RG,

LG and C in (2.11) and (2.16), one finds an equivalent conductivity of

σ(ω) =
1

Z(ω)
=
w

Λ

D

π[Γ− i(ω2 − ω2
r)/ω]

(2.18)

where the resonant (or plasmon) frequency is given by

ω2
r ≡

Dw

2Λ2ε0ε̄ ln [sec (πw/2Λ)]
(2.19)

This equation automatically accounts for the dipolar coupling of plasmon fields in

the adjacent graphene ribbons and provides an approximated value for plasmon

resonance frequency in an array of graphene ribbons as in 2.15 (ωr ≈ ωribbons−array).

Z1 = ε1

Z0 Z2 = ε2

Z0

C

R Λ
w

LΛ
wR   (ω)

T  (ω)

Figure 2.5: Equivalent circuit of graphene ribbon array.

The conductivity given in (2.18) is of the same form as that obtained from

the Drude-Lorentz model of conductivity for bound electrons, assuming a resonant

oscillation frequency of ωp. When incorporated into (2.8)-(2.10), this model accu-

rately approximates the transmission, reflection, and absorption spectrum of the

graphene ribbons.
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2.3.5 Experimental Results

In this section, we present experimental studies of the fundamental plas-

mon mode in graphene ribbons array. The graphene samples used here are quasi-

free-standing bilayer graphene (QFS-BLG) on a SiC substrate. These samples

are intrinsically hole-doped with carrier density n = 1 × 1013 cm−2 and mobility

µ = (3900±200) cm2V−1s−1. Three graphene ribbons samples with widths w=0.75,

1.5, 7 µm and periods Λ=1.5, 3, 16 µm were patterned using electron-beam lithogra-

phy with a PMMA resist and oxygen plasma etch to remove the graphene from the

exposed areas. Each of graphene gratings covered a region of 2 × 2 mm. Fig. 2.6a

is a false-colored SEM image of the second sample with width and period of 1.5 µm

and 3 µm respectively.

Far IR measurements were performed using a Bomem DA-8 FTIR spectrom-

eter with a mercury lamp as a source and a 4 K silicon composite bolometer as a

detector. Sample and reference SiC substrate were glued to identical copper circu-

lar apertures. THz beam illuminates the backside of the sample through a 1.5 mm

diameter aperture. A rotating polarizer in front of the sample is used for trans-

mission measurements with the electric field of light parallel and perpendicular to

graphene strips which yield the plasmonic and Drude responses. We measured the

ratio of transmissions for sample and bare SiC substrate glued on top of identical

holes in copper sample holder because this gives the best photometric accuracy of

the bolometer. The aforementioned transmission ratios were corrected by the trans-

mission ratio of the empty holes. The transmission is defined as the transmission
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spectra of the graphene on SiC divided by the transmission spectra of bare SiC,

giving the transmission of graphene. Fig. 2.6b depicts the measurement scheme

described here.

Fig. 2.6c illustrates the calculated charge density profile at the plasmon fre-

quency of graphene ribbons. Charges in graphene ribbons collectively oscillate back

and forth within the dielectric boundaries, leading to the accumulation of opposite

charges on either sides.

Fig. 2.6d plots the measured normalized transmission spectra for three rib-

bons samples considered here. Minima (about 30% decrease) in the transmission

spectra observed at plasmon frequencies due to increased on-resonance absorption

of excited plasmons in graphene ribbons. As ribbons width decrease, the plasmon

resonance frequency shifts to a higher frequency with a square-root dependence as

expected from (2.15). Fig. 2.6d also presents the transmission spectrum through

an unpatterned graphene sheet where Drude absorption causes strong decrease in

transmission at low frequencies. Green curves in Fig. 2.6d represents Drude Lorentz

fits (plus accounting for the etalon effect in the SiC substrate) to the experimentally

measured spectra.

As discussed earlier in this chapter, an interesting feature of graphene is the

gate-tunability of the carrier density. This enables a tunable resonance effect in a

plasmonic device like graphene ribbons , as plasmon frequency and strength depends

on carrier density (2.10 and 2.15). To experimentally demonstrate this, we spin-coat

a thin layer of PEO/LiClO4 as an electrolyte top gate and apply a DC gate voltage

Vg to the first graphene ribbons device that had an un-gated plasmon frequency of
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Figure 2.6: (a) False-colored SEM image of graphene ribbons with width w and

period Λ on a SiC substrate. (b) Schematic of FTIR transmission (T ) and reflection

(R) measurements. (c) Calculated charge density profile at the plasmon frequency

of graphene ribbons (d) Measured transmission spectrum through an un-patterned

graphene sheet, and three different arrays of graphene ribbons. Green curves are

fits from the Drude-Lorentz model. The minima (1.7 THz, 3.9 THz, 5.7 THz)

in transmission spectra occur because of plasmon resonances of graphene ribbons

arrays.
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5.7 THz. Fig. 2.7 presents the measured transmission spectrum at different gate

voltages/carrier densities. Increasing the gate voltage Vg toward positive values

decreases the carrier density and red-shifts/weakens the plasmon resonance, as a

result of reduction in Drude weight (2.15).
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Figure 2.7: Measured transmission spectra for different graphene carrier densities

tuned by applying a gate voltage Vg.

2.4 Plasmon Modes in Metal/Graphene Grating

2.4.1 Integral Equation

Maxwell’s equations are solved for the general case of plasmon modes in a

graphene-metal array with period Λ under normal-incidence plane-wave excitation

as shown in Figure 2.8.

To calculate the plasmon resonances and absorption in these structures, we

adapt the method of [65] to obtain an integral equation for the in-plane electric field

when the structure is illuminated by a normally incident plane wave at frequency ω
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Figure 2.8: A unit cell of a periodic array (in x direction) of graphene-contact. Λ is

the array period and w is the graphene channel width. ε is the dielectric constant

of the surrounding material. σc(ω) is the contact conductivity. (p.b.: periodic

boundary)

that is linearly polarized in the direction perpendicular to the graphene channels,

E(x) =
βc

β
(
1 + βc

2

)Ein +
β − βc
βΛ

∞∑
l=−∞

ei2πlx/Λ

1 + i
κlβc

2

w/2∫
−w/2

E(x′)e−i2πlx
′/Λdx′ (2.20)

where Ein denotes the complex amplitude of the normally-incident, x-polarized in-

cident plane wave with free-space wavelength λ, and κ2
l = [(lλ/Λ)2 − 1]. β and

βc represent the frequency-dependent (Drude) conductivity of the 2D material and

contact, respectively, normalized to the free-space impedance,

β = σ(ω)
Z0√
ε

, βc = σc(ω)
Z0√
ε

where Z0 (= 377 Ω) is the wave impedance in vacuum. The contact conductivity

σc is either zero, to model isolated graphene ribbons without contacts, or infinity to

model a perfect electrical conducting boundary, or more generally it can describe
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the Drude response of an arbitrary conductive contact. The sheet conductivity of

the metal was estimated from the bulk Drude conductivity, multiplied by the metal

film thickness.

By Fourier-expanding the electric field in the graphene channel from −w/2 to

+w/2,

E(x) =
∞∑
n=0

En cos(2πnx/w) (2.21)

the integral equation (2.20) can be re-cast as a matrix equation,1 + δ0m

2
δmn +

(βc − β)

4β

w

Λ

∞∑
l=−∞

R
(l)
mn

1 + i
κlβc

2

En = δm0
βc

β(1 + βc/2)
Ein (2.22)

where

R(l)
mn ≡ [sinc(nπ + lπw/Λ) + sinc(nπ − lπw/Λ)]

× [sinc(mπ + lπw/Λ) + sinc(mπ − lπw/Λ)] (2.23)

The Fourier components of the electric field can be obtained by numerically

solving (2.22). In practice, for smoothly-varying plasmon modes, only the lowest

few Fourier components are needed to accurately approximate the field.

Then, from E(x), the fractional absorbed power in the 2D material is computed

as

AG(ω) =
Z0/
√
ε0

2Λ|Ein|2

w/2∫
−w/2

Re
{
J∗(x)E(x)dx

}
=

Re
{
β
}

2Λ

1

|Ein|2

w/2∫
−w/2

|E(x)|2dx (2.24)

Figure 2.9a shows the structure of the metal-contacted graphene plasmonic

device considered here, which is comprised of a periodic array of narrow slots in a

metallic layer that is patterned on top of a continuous graphene layer. For com-

parison, in Figure 2.9b we also consider an array of isolated graphene ribbons of
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comparable dimension. In both cases, the period Λ is taken to be small compared

to the free-space wavelength. The resonant modes and fractional absorption in

the graphene A(ω) is then found by integrating the Joule power density over the

graphene ribbon, and normalizing to the incident power of the plane wave. The

calculated absorption spectrum reveals all of the dipole-active plasmon resonances

and the relative coupling of these modes to radiation. In this thesis we focus on the

fundamental low frequency plasmon mode. Higher order modes resonate at higher

frequencies and can also be optimally coupled to the THz radiation.

In Figure 2.9c we present the theoretically computed absorption spectrum

A(ω) for several different metal periods Λ, with the graphene ribbon width w = 350

nm held constant. The mobility and carrier density (electron or hole) were taken to

be µ = 1000 cm2V−1s−1 and n = 1.5× 1013 cm−2, respectively. The array shows no

discernable plasmon resonance when the period Λ and graphene width w are com-

parable, giving instead a Drude-like response. However, when the metal contacts

are made much wider than the graphene channel, a strong resonance emerges, char-

acterized by high absorption in the graphene ribbon, at a resonant frequency that

scales with n1/4w−1/2, similar to the plasmon resonances in uncontacted graphene

ribbons [8, 62]. The surrounding material is assumed to be a uniform dielectric,

in which case, the maximum achievable absorption in a two-dimensional layer is

50% [66] (also section 2.4.3.2). As shown in Figure 2.1c, at the resonant frequency,

the graphene absorption reaches a peak of the maximum possible value (50%), even

when the geometrical fill factor is only w/Λ = 1/20 (5%). This suggests an ex-

tremely high confinement of the THz field in the narrow slots where graphene is
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Figure 2.9: (a) Geometry of hybrid metal-graphene structure considered here. (b)
Comparable array of isolated graphene ribbons. (c) Calculated graphene absorption
spectrum AG(ω) for the hybrid metal-graphene device with periods of Λ = 1, 2.8,
4.9, 7 and 8.8 µm, for a graphene channel with w = 350 nm, n = 1.5 × 1013 cm−2,
and µ = 1000 cm2V−1s−1. The upper and lower dielectric regions were assumed
to be identical, with ε1 = ε2 = 5, in which case the theoretical maximum thin-
film absorption is 50% [66], indicated by the horizontal dashed line. (d) Calculated
absorption spectrum for isolated graphene ribbons with material properties identical
to the channels considered in (c), and periods of Λ = 0.7 and 7 µm. For comparison,
the dashed line indicates the Drude absorption spectrum for a continuous graphene
sheet. (e)/(f) Calculated charge density profile at the plasmon resonant frequency
for the hybrid metal-graphene device and graphene ribbon, respectively.
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located. We note that by using known techniques such as an anti-reflection coating

or a Salisbury screen [67] on top of the grating, the thin film limit absorption can

be increased to nearly 100%, and a perfect tunable graphene plasmonic absorber

can be achieved. The calculations confirm that these resonances disappear when

the graphene is absent, when the polarization is rotated parallel to the channels, or

when the graphene is electrostatically gated to the charge neutral point. For com-

parison, in Figure 2.9d, we show the absorption spectrum for an array of electrically

isolated graphene ribbons of identical width, carrier density, and mobility, which

yields a far lower on-resonant absorption (blue curve), even when the fill-factor is

increased to 50% (purple curve).

The nature of the fundamental metal-graphene plasmon resonance is illus-

trated in Fig. 2.9e, which shows the charge density calculated at the resonant fre-

quency. For comparison, we also show in Figure 2.9f the plasmon resonance for an

uncontacted graphene ribbon of the same dimension. In the contacted graphene, the

metal regions act as capacitive reservoir for charge accumulation, and the graphene

serves as an inductive channel, thus forming a resonant circuit that interacts strongly

with the incident radiation. This is in striking contrast to the isolated ribbon case,

where the coupling to incident radiation is weaker, and does not depend sensitively

on the grating period [8,9,62]. The extension of the spatial mode is accompanied by

a significant reduction in the plasmon frequency (by a factor of ≈
√

3 in comparison

to that of an isolated graphene ribbon [65]). The factor
√

3 is an approximate ratio

that is consistent the postulate that a plasma wave incurs an approximate phase

shift of approximately π/4 upon reflection from an open boundary [59,60], and 3π/4
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upon reflection from a conductive boundary.

2.4.2 Equivalent Circuit Model

The optical properties of the metal-graphene plasmonic grating in the sub-

wavelength limit (Λ < λ) can be modeled by an equivalent two-port circuit at

the junction of two semi-infinite transmission lines with impedances Z0/
√
ε1 and

Z0/
√
ε2, that represent the upper and lower regions respectively, as shown in Fig-

ure 2.10 (Z0 = 377 Ω, free space impedance). From (2.11), the graphene may be

modeled by its ohmic resistance, RG = σ−1
0 , in series with its kinetic inductance,

LG = (σ0Γ)−1 [55]. RG and LG must each be multiplied by a geometrical factor

of w/Λ to account for the filling factor in this periodic structure. The conduct-

ing contacts act as a capacitive grid [63,68] that can be described by a capacitance

CM = 2ε0ε̄Λ ln(csc(πw/2Λ))/π, where ε̄ = (ε1+ε2)/2 is the average dielectric permit-

tivity. The finite size graphene channels contribute to an additional parallel capaci-

tance [64], to give a total capacitance of C = CM + CG = 2ε0ε̄Λ ln(2 csc(πw/Λ))/π.

Therefore, the resistance, inductance and capacitances appearing in this model

are defined as:

RG = σ−1
0 (2.25)

LG = (σ0Γ)−1 (2.26)

CG = 2ε0ε̄Λ ln[sec(πw/2Λ)]/π (2.27)

CM = 2ε0ε̄Λ ln[csc(πw/2Λ)]/π (2.28)

and the incident and substrate regions are modeled as transmission lines with char-
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acteristic impedances of Z1 ≡ Z0/
√
ε1 and Z2 ≡ Z0/

√
ε2, respectively.

The graphene and contact capacitances can be combined into a single equiva-

lent capacitance of

C = CG + CM = 2ε0ε̄Λ ln(2 csc(πw/Λ))/π (2.29)

RG 
CG

(a) (b)

CM (Z1
–1+Z2

–1
E1

(+)

E1
(–)

E2
(+)

E2
(–)

Λ
w

LG Λ
w

RG 
CM+CGv(t)

Λ
w

LG Λ
w

)–1
Z2 =

ε2

Z0Z1 =
ε1

Z0

Figure 2.10: (a)Two-port equivalent circuit used to model for the hybrid metal-

graphene grating. RG and LG are the graphene ohmic resistance and kinetic in-

ductance respectively. CG is the graphene ribbon array capacitance, and CM is

the capacitance of the metallic grid. The transmission (T =
√
ε2/ε1|Et/Ei|2),

reflection(R = |Er/Ei|2), and graphene absorption (1−R−T ) can be approximately

found from this circuit. Z1 ≡ Z0/
√
ε1 and Z2 ≡ Z0/

√
ε2 are wave impedances in the

upper and lower semi-infinite regions with dielectric constants of ε1 and ε1, respec-

tively. (b) Simplified circuit model when there are no input waves to the system,

which is used to determine resonant (plasmon) frequency and damping rate.

2.4.2.1 Resonant Frequency and Linewidth

If there are no input waves applied to the system, the two transmission lines

representing regions 1 and 2 may be simply replaced by their equivalent parallel

impedance, which results in the simple second-order circuit shown in Figure 2.10(b).
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In this circuit model, the power dissipated in Z1 and Z2 represents the radiative

loss into regions 1 and 2 respectively, while the power consumed in RG gives the

absorption in the two-dimensional material. Applying Kirchoff’s laws, the voltage

v(t) is found to satisfy the following second-order homogeneous differential equation:

v̈(t) +

[
RG

LG
+

(Y1 + Y2)

C

]
v̇(t) +

[
Λ/w

LGC
+
RG(Y1 + Y2)

LGC

]
v(t) = 0 (2.30)

which describes a damped harmonic oscillator. In the limit of low-damping, the

resonant frequency (or plasmon frequency) is

ω0 =

√
Λ/w

LGC
(2.31)

= e

√
vF
√
π/2~

√ √
n

wε0ε̄ ln[2 csc(πw/Λ)]
(2.32)

As noted earlier, the resonant frequency scales in proportion to n1/4w−1/2, as

for the case of uncontacted graphene ribbons considered in [8], indicating that ω0

can be tuned through the application of a gate voltage or by adjusting the graphene

width. The resonant frequency blue-shifts weakly with increasing the duty cycle

w/Λ, but in all of the cases considered here the resonance frequency is lower than

that of an uncontacted graphene ribbon of the same width. (2.2) predicts that

increasing the period Λ for a fixed width w, will result in a slight red-shift of the

plasmon frequency, which is in direct contrast to the case of uncontacted graphene

ribbons, where the plasmon frequency is blue-shifted by increasing the period, as a

result of reduced dipolar plasmon mode coupling in adjacent ribbons [62].

The damping rate describes the linewidth of the plasmon resonance, which is
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found to be:

∆ω =
RG

LG
+

(Y1 + Y2)

C
(2.33)

= Γ +
π

2ε0ε̄Λ ln[2 csc(πw/Λ)]

(
Z−1

1 + Z−1
2

)
(2.34)

The first term in (2.34) is the conventional Drude linewidth, which is con-

strained by the mobility and carrier density, while the second term describes the

radiative linewidth of the plasmon, which does not depend on the graphene qual-

ity or material properties. This second term, which is negligible for uncontacted

graphene ribbons, fundamentally limits the quality factor (Q = ω0/∆ω). This pre-

dicts that the quality factor of the plasmon resonance improves upon increasing

Λ. For the parameters considered in Fig. 2.9a, this predicts that for Λ > 11.5w, a

plasmon resonance with Q > 1 can be achieved.

2.4.2.2 Absorbed Power and Impedance Matching

In many applications, one wishes to optimize the power that is absorbed in

the graphene layer, by appropriately designing or selecting the properties and di-

mensions of the grating and film. The equivalent circuit model can also be used

to predict the condition under which maximum power is delivered to the graphene

layer. The maximum on-resonant graphene absorption is achieved when the mate-

rial scattering rate Γ and radiative decay rates are equal, which also corresponds to

the impedance matching between two dissimilar media [69,70]. By maximizing the

absorption (2.10) with respect to the complex admittance Y (ω), one readily finds
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the optimal load admittance is

Yopt = (Y1 + Y2)∗ (2.35)

Since Y1 and Y2 are real numbers, (2.35) implies that Y (ω) must be real, which

occurs at an optimal frequency that is close to the resonant frequency,

ωopt =

√
Λ/w

LGC
−
(
RG

LG

)2

(2.36)

Y (ωopt) =
RG

LGC
(2.37)

In this case, the condition for maximum power transfer to the graphene layer can

be expressed as

RG

LG
= Γ = (Y1 + Y2)/C (2.38)

which means that for maximum on-resonant absorption, the intrinsic material damp-

ing Γ is equal to the radiation damping.

Under these matched conditions, the lumped circuit may be regarded as impedance

matching between two dissimilar media. The maximum fractional absorbed power

is

Amax =
Y1

(Y1 + Y2)
(2.39)

For the parameters considered in Fig. 2.9a, this matching condition occurs

when Λ ≈ 23w, which is consistent with Fig. 2.9c. We note that this circuit model

can be generalized by including an inductor [55,69,70] in series with CM to describe

metal-graphene plasmonic devices coupled to antennas. In the circuit model, metal

was treated as a perfect conductor. This is a very good approximation when metal
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is gold with Drude conductivity (Γ=3.33× 1013 rad/s, ωp=1.36 × 1016 rad/s). It

is possible to account for the ohmic loss in the metal by adding a resistor in series

with CM in the equivalent circuit model [63]. However, for the typical dimensions,

frequencies, and conductivities considered here, the series resistance is calculated to

be much smaller than the reactance of the capacitive grid. We do not expect that this

equivalent circuit model can be applied at infrared and optical frequencies, where

the metallic structure has its own plasmonic behavior that cannot be ignored [71,72].

2.4.2.3 Circuit Model vs Finite Element Calculations

Fig. 2.11 compares the transmission (T ) and reflection (R) obtained from the

full-wave finite element calculation (a and b) with the approximated values from

circuit model (c and d). This figure exhibits close agreement between the results

from circuit model (Fig. 2.11a) and the exact solution for different grating periods.

2.4.3 Measurement and Experimental Results

A single layer of graphene was formed on 8mm × 8mm semi-insulating (resis-

tivity > 1010 Ω·cm) (0001)6H-SiC terraces by the Si sublimation process in an Ar

ambient. The substrates, misoriented from the basal plane by approximately 0.1

deg, were etched in H2 prior to graphene synthesis [73]. Gold strips were fabricated

on top of graphene using electron-beam lithography followed by Cr/Au (thickness:

5 nm/75 nm) thermal evaporation (Cr as the adhesion layer), and a lift-off process.

The Au strips are 1.5 mm long and the whole grating is 1.5 mm wide creating a
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Figure 2.11: (a)/(b) transmission/reflection for different periods computed by full-

wave finite element calculations. (c)/(d) transmission/reflection for different periods

calculated by the circuit model shown in Fig. 2.10a. ε1 = 1 (air), ε2 = 9 (SiC),

w = 0.35 µm, µ = 1000 cm2/Vs, n = 1.5× 1013 cm−2
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grating that has a 2.25 mm2 area. To electrically isolate the grating from other parts

of the graphene/SiC chip, a narrow ribbon (7 µm) was defined by electron-beam

lithography using PMMA resist as a mask and oxygen plasma to remove the un-

masked areas. Finally, electrolyte (Polyethylene oxide/LiClO4) was drop-cast on the

sample as the top gate. The gate voltage was applied between the grating device and

the other electrically isolated part of the SiC graphene substrate. Fig. 2.12 shows

a scanning-electron micrograph image of a device with w = 350 nm and Λ = 7µm

that was used to study the hybrid metal-graphene plasmons.

SiC Au
graphene

Electrolyte
Vg

R

T

(a) (b)

Au

7 µm 350 nm

graphene

Figure 2.12: (a) The false-colored SEM image of the gold-graphene grating (top

view). w=350 nm, Λ = 7 µm. (b) Diagram of the device with electrolyte top

gate, and the reflection/transmission measurement scheme. The incident beam is

polarized perpendicular to the gold strips.

Far infrared simultaneous transmission/reflection measurements are performed

in a BOMEM DA-8 FTIR system with mercury lamp as a source and two 4 K silicon

composite bolometers as detectors. A polarizer is placed in the beam path and

only passes polarization perpendicular to metal strips. The 1.5 × 1.5 mm2 metal-

graphene grating device is mounted on a copper plate with a 1.5 mm diameter
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aperture. The incident THz beam illuminated the back of the device making an

angle about 10◦ from the normal. One bolometer is located on the transmitted

beam path and one at the reflection side. A separate measurement on the sample

without electrolyte was carried out to find and remove the electrolyte effect on the

measured data.

Fig. 2.13a shows the measured transmission as a function of frequency for dif-

ferent carrier density levels tuned by application of the gate voltage Vg. A resonant

peak is observed in the transmission, which grows in strength and shifts to higher

frequency with increasing carrier density. In reflection, the plasmon resonance ex-

hibits a minimum that also becomes stronger and blue-shifts as the carrier density

is increased (Fig. 2.13b). In this figure, we present the reflection normalized to the

lowest carrier density data to exhibit the plasmon resonance dip more clearly. The

measured absorption (A = 1 − R − T ) is presented in Fig. 2.13c, showing how the

frequency and strength of THz resonant absorption can be controlled by tuning the

carrier density with a gate voltage. The carrier density was extracted from the plas-

mon frequency at each gate voltage and by comparing the experimental spectra to

finite element calculations.

Finite element calculations of the same measured quantities presented in Fig. 2.13a

and 2.13b respectively are shown in Fig. 2.13d and e, showing agreement with the

experimental observations. Frequency-domain finite element calculations were per-

formed on a unit cell of the metal-graphene grating on top of the SiC substrate

(refractive index=3) with periodic boundary condition. The gold was modeled as

a 75 nm thick Drude metal with Γ=3.33× 1013 rad/s, ωp=1.36 × 1016 rad/s. The
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Figure 2.13: (a) Measured transmission (T ) for different graphene carrier densities
tuned by applying a gate voltage Vg. (b) Measured Reflection (R) off the device for
different carrier densities normalized to the lowest carrier density (n = 1.6 × 1012

cm−2) data. (c) Control of the device absorption (relative to the lowest carrier
density) by electrically tuning the graphene carrier density (A = 1 − R − T ). (d)
Finite element calculations of transmission for different carrier densities . (e) Finite
element calculations of the normalized reflection. w = 350 nm, Λ = 7 µm, µ = 1, 010
cm2V−1s−1 at n = 5× 1012 cm−2. The feature at 7.2 THz is the phonon resonance
of the substrate (SiC). R1 and A1 are the reflection and absorption spectra for the
lowest carrier density (n = 1.6× 1012 cm−2).
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electrolyte on top of grating was modeled as a dielectric (refractive index=1.7).

Currents, fields, and charge density in graphene and metal were calculated. Trans-

mission and reflection of an incident plane-wave, polarized perpendicular to the

metal strips, were also calculated. In the carrier-density-dependent calculations,

a constant scattering rate was assumed for graphene. Mobility was taken to be

1,010 cm2V−1s−1 at n = 5× 1012 cm−2, based on van der Pauw Hall measurements

taken on the full graphene on SiC sample prior to processing. In the finite element

calculations Fermi-level pinning at graphene-metal junction [74] was ignored. A

constant Fermi level across the graphene channel and zero graphene-metal contact

resistance were assumed. The close agreement between experimental results and

theory suggest that the Fermi-level pinning and non-zero contact resistance effects

are negligible in the devices we studied. However, we expect that they should have

a noticeable effect for narrow graphene channels (<100 nm.) [74].

2.4.4 Geometrical Dependence

As with isolated graphene ribbons, the resonant frequency can also be changed

by tailoring the width of the graphene channel, as predicted in (2.32). The equivalent

circuit model predicts that the plasmon resonant frequency depends on the graphene

channel width w and period Λ according to (2.32). Apart from the weak logarithmic

dependence on the duty cycle w/Λ, the resonant frequency is predicted to scale in

proportion to w−1/2, as for isolated graphene ribbons [8,56]. To confirm this scaling

relation, we conducted a second set of reflection measurements using a graphene
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sample that was fabricated with a narrower channel. Fig. 2.14 shows the normal-

ized reflection measurement for metal-graphene gratings with two different graphene

channel widths of w = 350 nm and 200 nm. For the same carrier density, the res-

onant frequency is seen to increase by approximately 30% (=
√

350 nm/200 nm)

when the width is decreased, as predicted by (2.32).

4 5 6 7 8 9 10 11 12
f (THz)

R/
R1

 (%
)

85

90

95

100

x1.3

Figure 2.14: Comparison of measured normalized reflection for w = 200 nm, Λ = 5

µm (green curve), with w = 350 nm, Λ = 7 µm (gray curve) at the same carrier

denisty n = 10.3× 1012 cm−2. Plasmon resonance is blue-shifted by about 30%.

Finally, we note that these metal-graphene plasmonic structures can exhibit

near 100% resonant transmission in a high mobility graphene sample, a feature that

could be very useful in THz transmission filters or modulators. Fig. 2.15a shows the

calculated power transmission spectrum T (f) for the case of w/Λ = 1/20, and for

graphene mobilities ranging from 1,000 to 100,000 cm2V−1s−1 (n = 1.5×1013 cm−2).

When the graphene mobility is increased, the graphene absorption decreases, but

is replaced by a resonant peak in the transmission that approaches 100% transmis-

sion in the limit of high mobility. Again, we note that this resonance shifts to zero
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Figure 2.15: (a) Calculated transmission through the metal-graphene grating for

different graphene mobility (µ) and n = 1.5×1013 cm−2. (b) The plasmon resonance

width as a function of graphene mobility. (c) Transmission through the metal-

graphene grating for different carrier density levels. w = 350 nm, Λ = 7 µm,

µ = 50, 000 cm2V−1s−1 at n = 1.5× 1013 cm−2. In all these results, the surrounding

material was assumed to be uniform with ε = 5.
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frequency when the graphene is absent or charge-neutral, proving that the induc-

tive graphene channel is essential to support the plasmonic resonance. As shown in

Fig. 2.15b, the spectral width of this resonance decreases inversely with the mobility,

but reaches a plateau in the limit of high mobility. Above this point, the plasmon

linewidth is dominated by radiation damping, and cannot be further reduced by im-

proving the material quality, as predicted by (2.34). In contrast to isolated graphene

ribbons, the plasmons in metal-contacted graphene are naturally radiative – a fea-

ture that can have important consequences in tunable graphene emitters. Fig. 2.15c

demonstrates the tunability of the near 100% resonant transmission through chang-

ing the graphene carrier density. The calculated transmission spectra also illustrate

the existence of higher order plasmon modes that are not described by the simple

equivalent circuit model of Fig. 2.10. The next section briefly considers these higher

order modes and how they can be optimized.

2.4.5 Higher Order Plasmon modes

Beyond the fundamental mode that is considered in this letter, higher order

plasmon modes also exist in the hybrid graphene-metal structure. Fig. 2.16a shows

the charge density profile for the next dipole-active (third order) mode. Fig. 2.16b is

the same plot as in Fig. 1e but extended to show the behavior at higher frequencies.

The third order mode appears as a small peak in the absorption around 17 THz. For

the parameters chosen in this figure, the highest on-resonant absorption is obtained

for Λ = 8w = 2.8 µm (red curve).
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Figure 2.16: (a) Charge density profile at the 3rd plasmon mode frequency for metal-

graphene structure. (b) Graphene absorption (AG) under plane-wave excitation

of metal-graphene gratings with different periods (w = 350 nm, n = 1.5 × 1013

cm−2, µ = 1000 cm2 /Vs ). The surrounding material was assumed to be uniform

(ε1 = ε2 = 5). (c) Graphene absorption in metal-graphene gratings (w = 350

nm, n = 1.5 × 1013 cm−2) with Λ = 8w as a function of graphene mobility. The

absorption is close to the maximum value (50%) for µ = 9000 cm2V−1s−1.
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For the higher order modes, the equivalent circuit model Figure 2.10 can no

longer be used to characterize the resonant frequency and radiative damping rate.

We nonetheless expect that, as with the fundamental mode, optimal resonant ab-

sorption in the graphene can be attained when the radiative losses are matched to

the graphene scattering rate. To confirm this principle, we varied the scattering

rate Γ by changing the mobility µ. Figure 2.16c plots the calculated absorption

for Λ = 2.8 µm for six different graphene mobilities ranging from 1000 to 20,000

cm2V−1s−1. The absorption at the 3rd order peak approaches the theoretical max-

imum (50%) for graphene mobility of 9,000 cm2V−1s−1. This demonstrates that,

unlike most plasmonic structures in which higher order modes are weakly coupled

to the incident plane-wave, the plasmon modes in the hybrid graphene-metal sys-

tem can be efficiently excited by appropriately choosing the geometry of the metal

contacts and graphene properties.

These results demonstrate how the hybrid metal-graphene resonances can be

designed and tuned to produce strongly enhanced absorption at a chosen resonant

frequency. These hybrid plasmon modes could also be incorporated in graphene-

integrated metamaterials [55, 75, 76], where the metal-graphene plasmon enhances

the metamaterial resonance.

2.5 Conclusion

We report a new type of plasmon resonance that occurs when graphene is

connected to a metal. These new plasmon modes offer the potential to incorpo-
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rate a tunable plasmonic channel into a device with electrical contacts, a critical

step towards practical graphene terahertz optoelectronics. Through theory and ex-

periments, we demonstrate, for example, anomalously high resonant absorption or

transmission when subwavelength graphene-filled apertures are introduced into an

otherwise conductive layer. These tunable plasmon resonances are essential yet miss-

ing ingredients needed for terahertz filters, oscillators, detectors, and modulators.

42



Chapter 3: Nonlinear Terahertz Response of Graphene Plasmons

3.1 Overview

In the terahertz and mid-IR regime, the light-graphene interaction can be

greatly increased by exploiting plasmon resonances, where the field is strongly lo-

calized and resonantly enhanced in a sub-wavelength graphene region [57, 77]. A

dramatic enhancement of the linear absorption has been experimentally observed

in isolated subwavelength graphene elements [8,78,79], and graphene-filled metallic

apertures [51] at resonant frequencies that can be controlled through the graphene

dimensions and carrier concentration. Significant enhancement in the nonlinear re-

sponse of graphene can be expected and has been theoretically predicted [57,80–83].

To date, there have been no experimental demonstrations to study this effect, or to

explore the energy loss dynamics of these collective plasmonic excitations.

3.2 Nonlinear Plasmonic Response of CVD Graphene Ribbons

3.2.1 Overview

In this section, we measure the nonlinear response of plasmon resonances in

an array of graphene nanoribbons using THz pump-THz probe measurements with
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a free-electron laser that is tuned to the plasmon resonance (9.4 THz.) We observe

a resonantly-enhanced pump-induced nonlinearity in the transmission that is or-

ders of magnitude stronger than that of unpatterned graphene. The pump-probe

measurements reveal an energy relaxation time of approximately 10 ps (measured at

20K). We present a thermal model of the nonlinear plasmonic response that includes

scattering through LA phonons and disorder-assisted supercooling, which matches

both the observed timescale and power-scaling of the nonlinear response [84].

3.2.2 Device Fabrication and FTIR Characterization

The plasmonic devices were fabricated using CVD-grown monolayer graphene

that was transferred onto a 300 nm silicon oxide on lightly doped silicon (250 Ω·cm).

Graphene ribbons with width w =730 nm and period Λ =1.5 µm were patterned

using electron-beam lithography with a PMMA resist and oxygen plasma etch to

remove the graphene from the exposed areas. The graphene grating covered a re-

gion of 1.5 × 1.5 mm. Fig. 3.1a-b shows the structure, dimensions, and scanning-

electron micrograph of the graphene plasmonic resonant structure considered here,

and Fig. 3.1c shows the measured room-temperature linear transmission spectrum

of the sample, which exhibits a strong dip in transmission centered at 9.4 THz that

is associated with plasmonic absorption of the nanoribbons.

The plasmon resonance can be approximated by assuming an equivalent sheet

conductivity of the graphene ribbon array [61,64] (Chapter 2, section 2.3.4),

σ(ω) =
w

Λ

D

π[Γ− i(ω2 − ω2
p)/ω]

(3.1)
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where Γ is the scattering rate and D ' √πne2vF/~ is the Drude weight of graphene

with a carrier concentration of n and Fermi velocity vF . The plasmon resonant

frequency is related to the Drude weight by ω2
p ≡ Dw/ [2Λ2ε0ε̄ ln (sec (πw/2Λ))],

where ε̄ = (ε1 +ε2)/2 is the average of the substrate and incident dielectric constants

[64].

The relative power transmission through such a conductive sheet, accounting

for reflection and transmission by the silicon substrate, is given by (Chapter 2,

section 2.2.1)

τ(ω)/τ0 = |1 + σ(ω)/(Y1 + Y2)|−2 (3.2)

where τ0 denotes the transmission with the graphene film absent, and Yj ≡

(ε0εj/µ0)1/2 is the admittance of the incident (j = 1) or substrate (j = 2) region.

The green curve in Fig. 3.1b shows the best-fit transmission spectrum calculated

using this model, from which we determined the carrier concentration and graphene

scattering rate to be n = 9 × 1012 cm−2 and Γ = 23 rad/ps, respectively at room

temperature, which corresponds to a Fermi energy of 0.35 eV and carrier mobility

of 1,250 cm2V−1s−1.

3.2.3 Pump-probe Measurements

Fig. 3.2 illustrates the experimental setup that was used to investigate the

nonlinear THz response of the graphene plasmons. The free electron laser was

tuned to produce 5.5 ps pulses with a repetition rate of 13 MHz that are resonant to
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Figure 3.1: (a) False color scanning electron micrograph of fabricated graphene

ribbons. (b) Cross sectional diagram of device. (c) Measured (blue) and best fit

(green) linear transmission spectrum of device, showing a decreased transmission at

the plasmon frequency of 9.4 THz. The superposed red curve shows the measured

spectrum of the free electron laser pulse source that was used to observe the nonlinear

response.
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the plasmon frequency of 9.4 THz. Compared to the plasmon resonance, the FEL

radiation was spectrally narrow (cf. Fig. 3.1c) The beam was split into pump and

probe beams that were delayed relative to one another using a mechanical delay line.

In all measurements the pump and probe beams were co-polarized, but the state

of polarization could be set to be either perpendicular or parallel to the graphene

ribbons, in order to control whether or not the plasmons were excited, respectively.

An off-axis parabolic mirror was employed to focus and overlap both beams at the

graphene ribbon array. The sample was cooled to a (lattice) temperature of 20

K for all of the pump-probe measurements. While the emerging pump beam was

extinguished, the intensity of the transmitted probe beam was measured using a

cryogenically cooled bolometer as a function of the pump-probe delay ∆t.

This signal, recorded as a function of the pump-probe delay ∆t, is depicted

in Fig. 3.3a for several pump fluences. In all cases, the pump causes a transient

increase in transmission that is accompanied by a decrease in absorption. The

observed nonlinear response decays in the wake of the pump pulse with a time

constant of ∼ 10 ps, which is close to the previously reported hot electron-phonon

relaxation time in graphene at the measurement temperature (20 K) [85].

3.2.4 Discussion and the Nonlinear Thermal Model

The electron temperature T in the graphene evolves in response to the tera-

hertz pump pulse with intensity I(t) at the center frequency ω0 according to [31]

αT
dT

dt
+ β(T 3 − T 3

L) = A(ω0;T )I(t) (3.3)

47



off-axis
parabolic

mirror

polarization
rotation

from
FEL

beamsplitter

delay (Δt)

bolometer

graphene
sample

(in cryostat)

pu
m

p
probe

Figure 3.2: Sketch of the experimental setup for the pump-probe measurements. An

optional reflective polarization rotation system orients the polarization perpendic-

ular to the graphene ribbons. The pulses were separated into parallel, co-polarized

pump and probe pulses that were focused onto the graphene sample inside of a

cryostat. The transmitted probe power was measured as a function of the relative

pump-probe delay ∆t, which was controlled through a mechanical delay stage.
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where αT is the specific heat of graphene with α = 2πk2
BεF/(3~2v2

F ),

β = ζ(3)V 2
DεFk

3
B/(π

2ρ~4v3
F s

2l) is the cooling coefficient, TL is the lattice temper-

ature, A(ω0;T ) is the fractional absorption in the graphene, which itself depends

on temperature. kB is the Boltzmann constant, ρ is the areal mass density, s is

the speed of sound in graphene, ζ is the Riemann zeta function, l is the electron-

disorder mean free path, and VD is the acoustic deformation potential. We assume

that the temperature relaxation is dominated by disorder-assisted supercollision

cooling ∝ T 3 [31, 86], rather than momentum-conserving cooling [87].

The fractional absorption appearing in (3.2) can be derived from the equivalent

conductivity (3.1) (Chapter 2, section 2.2.1),

A(ω0;T ) =
4Y1 Re {σ(ω0)}
|Y1 + Y2 + σ(ω0)|2 (3.4)

where ω0 denotes the carrier frequency of the quasi-CW pump and probe pulses.

The basis of the thermal model is that the Drude weight D, scattering rate Γ, and

plasmon frequency appearing in (3.1) implicitly depend upon the electron tempera-

ture T , which increases when the incident pump pulse is absorbed in the graphene

layer.

The temperature-dependent Drude weight [5,88] and plasmon frequency (Chap-

ter 2, section 2.3.4) are calculated as

D(T ) =
2e2

~2
kBT ln

[
2 cosh

(
µ(T )

kBT

)]
(3.5)

ω2
p(T ) =

D(T )w

2ε0ε̄Λ2 ln (sec (πw/2Λ))
(3.6)

The scattering rate Γ also varies with temperature, both because of temperature-

dependent scattering from long-range Coulomb impurities and longitudinal acoustic
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(LA) phonons [89].

Γ(T ) =
Γ0εF
µ(T )

+
kBTεFV

2
D

4~3v2
Fρs

2
(3.7)

The second term in (3.7) describes the temperature dependent LA phonon scatter-

ing, which was essential in order to match the observed fluence dependence of the

nonlinear response, shown in Fig. 3.3c. The fluence dependence will be discussed

further in this section.

As the fast electron-electron scattering leads to a thermalization of the carrier

distribution on a time scale of femtoseconds, we assume that the electron population

maintains a Fermi distribution, with a temperature that evolves in response to the

terahertz pump pulse according to (3.2). The total electron population n must

remain constant as the electrons heat and cool, which defines the following implicit

relationship between the electron temperature and the chemical potential µ(T ),

n =

∞∫
−∞

ν(E)dE

1 + exp

[
E − µ(T )

kBT

] (3.8)

where ν(E) is the density of states in graphene. For a given temperature T , (3.4)

can be numerically solved to determine the associated chemical potential µ(T ).

To account for the duration of the pump pulse in our experiment, which is

of the same order of magnitude as the carrier relaxation time, the temporal evo-

lution of the carrier temperature is calculated by numerically solving (3.2) via the

Euler’s method, assuming a 5.5 ps Gaussian input pulse I(t). At each time-step, the

chemical potential, Drude weight, plasmon frequency, conductivity, and fractional

absorption for the subsequent time step were adjusted based upon (3.4), (3.5), (3.6),

(3.1) and (3.3), respectively. The step size for this calculation is an order of mag-
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nitude smaller than the duration of the pump pulse to minimize the error caused

by this step by step solution. Knowing the instantaneous temperature transient

T (t), the fractional change in probe transmission is then numerically computed as

a function of the pump-probe delay ∆t using a correlation integral.

The results from the thermal model (Fig. 3.3b) are in close agreement with

the experimental data (Fig. 3.3a), and correctly predict the 10 ps response time.

This agreement suggests that non-thermal nonlinearities in graphene, which were

theoretically proposed in recent studies [90,91], are weak in our experiment. The in-

creased transmission is a result of a decreased plasmon frequency, which is caused by

a reduced value of the chemical potential at elevated electron temperatures (cf. Eq.

(3.4) and (3.5)), and a broadening of the resonance caused by a faster scattering rate.

While both effects lead to an increased transmission at resonance, the calculations

show a decreased transmission for photon frequency below the plasmon resonance

(to be discussed in section 3.2.7). At higher fluence, our measurements show a longer

tail that is not reproduced by the model. This slight discrepancy might be caused

by a bottleneck in the phonon heating [92], which was not included in our model.

Fig. 3.3c plots the peak value of the (observed and calculated) transient response

as a function of the incident pump fluence F , which shows an approximate F 1/2

dependence. Along the right axis, we plot the corresponding simulated peak elec-

tron temperature as a function of fluence, showing the expected F 1/3 dependence.

The observed power scaling was best matched by assuming supercollision cooling

as the single dominant cooling mechanism, together with temperature-dependent

momentum scattering through LA phonons [5, 89].
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Figure 3.3: (a) Measured relative change in transmission of the probe signal for

different pump fluences as a function of pump-probe time delay ∆t. The positive

signal indicates a decrease in absorption that becomes stronger at higher pump

fluences. (b) Calculated relative change in transmission based on a nonlinear thermal

model for plasmonic absorption in graphene nanoribbons that includes supercollision

cooling and LA phonon scattering. (c) Measured and simulated peak of relative

transmission change (left) and peak electron temperature (right) as a function of

pump fluence F .
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Only two free parameters were used in the numerical simulations: the acoustic

deformation potential VD and the electron disorder mean free path l, which together

control the strength of dominant cooling and scattering mechanisms. The observed

F 1/2 power scaling seen in Fig. 3.3c was matched by choosing VD = 11 eV, which is

consistent with values reported in the literature for similar graphene [87, 93]. The

mean free path l was adjusted to match the overall magnitude of the nonlinear-

ity, from which we obtained l = 2 nm, which is smaller than that expected from

the scattering rate, but consistent with other recent experimental measurements of

cooling in large-area graphene [93]. The origin of this discrepancy remains to be

explained.

3.2.5 Fluence Dependence

As shown in Fig. 3c, the pump-induced change in transmission ∆τ increases

approximately with the fluence F 1/2. Here we present a approximate model to

explain the nature of this dependence.

The on-resonant transmission through the plasmonic ribbons can be expressed

in terms of the three temperature dependent parameters D, Γ and ω2
p using (3.1)

and (3.2):

τ =
4Y1Y2∣∣∣∣Y1 + Y2 +

w

Λ

D

π[Γ− i(ω2 − ω2
p)/ω]

∣∣∣∣2 (3.9)

When the relative changes in these parameters are small, as is the case for the

measurements reported here, the resulting fractional change in transmission ∆τ/τ

may be approximated by Taylor-expanding (3.9) to first order, with the assumption
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that ω = ωp,

∆τ

τ
=

2
w

Λ

D

πΓ[
Y1 + Y2 +

w

Λ

D

πΓ

] (∆Γ

Γ
− ∆D

D

)
(3.10)

We note that when evaluated at the resonant frequency, the thermally-induced red-

shift ∆ω2
p causes only a higher-order change in ∆τ , which is omitted in (3.10).

The Drude weight can be approximated as

D(T ) =
2e2

~2
kBT ln

[
2 cosh

(
µ(T )

kBT

)]
(3.11)

' 2e2

~2
µ(T ) (3.12)

' 2e2εF
~2

(
1− π2k2

BT
2

6ε2
F

)
(3.13)

In the second line, we have used the fact that even for the hottest electron tem-

peratures considered (660 K = 57 meV), the Fermi energy (350 meV) and chemical

potential significantly exceed kBT . In the third line we have employed the Som-

merfeld expansion to approximate the relation between electron temperature T and

chemical potential µ(T ). The fractional decrease in Drude weight is then found to

be:

∆D

D
= −π

2k2
BT

2

6ε2
F

(3.14)

We note that the change is estimated relative to that at absolute zero temperature,

whereas in the measurements, the lattice temperature was small (T0 = 20 K), but

non-zero.
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The scattering rate can likewise be approximated as:

Γ(T ) =
Γ0εF
µ(T )

+
εFV

2
DkBT

4~3v2
Fρs

2
(3.15)

' Γ0

(
1 +

π2k2
BT

2

6ε2
F

)
+
εFV

2
DkBT

4~3v2
Fρs

2
(3.16)

where we have again assumed εF � kBT and employed the Sommerfeld expansion.

The fraction increase in scattering rate (relative to absolute zero temperature) is

then given by:

∆Γ

Γ
=

εFV
2
DkBT

4Γ0~3v2
Fρs

2
+
π2k2

BT
2

6ε2
F

(3.17)

When (3.14) (3.17) are combined as in (3.10), both effects sum to cause an

increase in the transmission that is proportional to:

(
∆Γ

Γ
− ∆D

D

)
=

εFV
2
DkBT

4Γ0~3v2
Fρs

2
+
π2k2

BT
2

3ε2
F

(3.18)

The first term (∝ T ) is associated with the temperature-dependent LA phonon scat-

tering rate, and the second term (∝ T 2) results from the temperature-dependent

chemical potential. The relative strength of these two terms is related to the de-

formation potential VD, which was adjusted to match the experimentally observed

fluence dependence. For the parameters considered in the experiment, these two

terms would be equal to one another at an electron temperature of T = 336 K.

For the range of experimental conditions considered here, neither term can be ne-

glected, and hence we expect a dependence of ∆τ on electron temperature T that

falls somewhere between linear and quadratic.

For the narrow-band terahertz pulses considered here, the relationship between

peak temperature T and fluence F can be estimated by assuming that the peak
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temperature and peak intensity are nearly coincident in time. From equation (2) in

the main text,

βT 3
max = A(ω)Imax (3.19)

where Tmax denotes the peak electron temperature, and Imax = 0.94F/∆tFWHM is

the peak intensity of a Gaussian pulse with fluence F and duration ∆tFWHM. We

have again neglected the small term βT 3
0 on the left-hand side that describes the

lattice temperature, and ignored the higher-order temperature-dependent change in

the absorption coefficient A appearing on the right-hand side. (3.19) predicts that

the peak temperature will scale as F 1/3, as confirmed by the numerical simulations

of Fig. 3c.

Substituting this relationship into (3.18), one concludes that for the exper-

imental conditions considered here the change in transmission ∆τ should exhibit

a non-power-law dependence on fluence that falls intermediate between F 1/3 and

F 2/3. As shown in Fig. 3b, empirically observed and simulated scaling relation close

to F 1/2 is consistent with this model. We note that including the temperature-

dependent LA phonon scattering in addition to conventional Coulomb impurities

was essential to correctly match the observed fluence dependence.

3.2.6 Nonlinear Signal with No Excited Plasmons

To confirm the plasmonic enhancement of the nonlinearity, we repeated the

pump-probe measurements with the pump and probe co-polarized in the direction

parallel to the graphene ribbons, thus ensuring that the plasmons are not excited.
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Fig. 3.4a compares the measurements from the two polarization cases for the same

incident pump fluence and frequency. The measured nonlinearity is far stronger

when the plasmons are excited than for the opposite polarization, consistent with

the thermal predictions. Fig. 3.4b shows the electric field profile at the plasmon

resonance, estimated by frequency-domain finite element calculations, showing the

dramatic field enhancement that occurs near the graphene sheet, which contributes

to the enhanced nonlinearity.

3.2.7 Frequency Dependence of the Nonlinear Absorption

The increased carrier temperature changes the strength of the plasmon absorp-

tion as well as its resonance frequency. Hence, the nonlinear absorption is highly

frequency dependent. While both effects lead to an increase of the transmission at

resonance, the situation changes for photon frequencies below resonance. In this

case, red shift of the plasmon resonance leads to a decrease of the transmission, op-

posed to the effect of the weakened plasmon absorption. Whether the overall change

in transmission is positive or negative depends on which of these processes domi-

nates. To investigate this behavior, we calculated the change of the transmission as

a function of the probe photon frequency with the model described in the main text.

The parameters of the calculation were the same as in the simulation of the experi-

ment, only the photon frequency of the probe was varied. The calculated change in

transmission as a function of the probe frequency for different pump-induced elec-

tron temperature rise is depicted in Fig. 3.5. Our calculations show clearly that the
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Figure 3.4: (a) Comparison of normalized change in transmission for two differ-

ent polarizations. The blue curves show the measured and simulated pump-probe

response when the pump and probe were polarized perpendicular to the graphene

nanoribbons, thereby exciting the plasmon. The red curves show the measured and

simulated response for the same incident pump fluence, but opposite polarization,

where there is no plasmonic excitation, and the nonlinear response is correspond-

ingly much lower. (b) Electric field profile at the resonant frequency, calculated

using a (linear) finite element time domain method with a normally incident wave

from above, showing the field-enhancement at the graphene surface. The color in-

dicates the electric field intensity |E|2, relative to that of the incident plane wave,

showing a nearly 9-fold intensity enhancement at the graphene surface.
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red shift is the dominating effect and therewith the overall pump-induced change in

transmission is predicted to be negative for photon frequencies below resonance.
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Figure 3.5: Peak change of transmission as function of frequency calculated for the

sample used in our experiments.

3.3 Pump-probe Measurements on QFSBL-graphene Ribbons

3.3.1 Overview

In this section, we present nonlinear pump-probe measurements on an array

of quasi-free-standing bilayer graphene (QFSBL-graphene)ribbons. These graphene

samples have low carriers scattering rate, by about a factor of 3 smaller than the

CVD graphene considered previously in this chapter. This leads to sharper/stronger

plasmon resonances and much higher nonlinear response, as predicted in previous

section. We also study the nonlinear response of graphene ribbons at different fre-
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quencies around the plasmon resonance. These measurements confirm the nonlinear

red-shift of plasmon resonance predicted by our nonlinear thermal model.

3.3.2 Device Fabrication and FTIR Characterization

The plasmonic graphene ribbons devices were fabricated on QFSBL-graphene.

Ribbons with width w = 900 nm and period Λ = 1.2 µm were patterned using

electron-beam lithography with a PMMA resist and oxygen plasma etch to remove

graphene from the exposed areas. The graphene grating covered a region of 1.5 × 1.5

mm. Fig. 3.6 plots the measured room-temperature linear transmission spectrum of

the sample, which exhibits a strong narrowband plasmonic absorption at 3.9 THz.

The green curve shows the Drude-Lorentz fit to the measured FTIR spectrum using

n = 9× 1012 cm−2 and Γ = 8.6 rad/ps. Based on the fit, the QFSBL-graphene has

a similar carrier density to the CVD graphene considered before, but the scattering

rate is 2.7 times smaller. For Drude-Lorentz fitting to the measured data, we used

the extinction ratio and the resonance width as free parameters and assumed a

resonance frequency at 3.9 THz as observed from FTIR measurements.

3.3.3 On-Plasmon Resonance Pump-Probe Measurements

We employ transmission pump-probe measurements (Fig. 3.2) to study non-

linear response of QFSBL-graphene ribbons at the plasmon resonance (3.9 THz).

Both pump and probe are polarized perpendicular to graphene ribbons. Fig. 3.7a

shows the measured relative change in transmission of the probe for different pump
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Figure 3.6: Measured (blue) and best fit (green) linear transmission spectrum of

device, showing a decreased transmission at the plasmon frequency of 3.9 THz.

fluences as a function of pump-probe time delay. A very strong saturable absorp-

tion of plasmons is observed, which increases at higher pump fluences. We note

that, for a similar pump fluence, the saturable absorption is about 6 times stronger

than what observed on CVD graphene with 2.7 times larger scattering rate, i.e.

wider/weaker plasmon resonance (Fig. 3.3a). In general, it is expected that nonlin-

earity significantly grows with decreasing losses in graphene, as the effect of both

nonlinear thermal widening and red-shifting of plasmon resonances is more signifi-

cant for stronger/spectrally-narrower plasmon resonances.

Fig. 3.7b shows the measured peak of relative transmission change as a func-

tion of pump fluence, which exhibits a square-root-like dependence similar to the

observed results in CVD graphene ribbons (Fig. 3.3c). Based on our nonlinear

thermal model, the observed square-root fluence dependence suggests that QFSBL-
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graphene and the CVD graphene considered here have similar deformation potential

VD and supercollision cooling coefficient β3.
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Figure 3.7: (a) Measured relative change in transmission of the probe signal for

different pump fluences as a function of pump-probe time delay ∆t. The positive

signal indicates a decrease in absorption that becomes stronger at higher pump

fluences. (b) Measured peak of relative transmission change as a function of pump

fluence F . The black curve is a square-root fit to the measured data.

3.3.4 Frequency Dependence in the Nonlinear Thermal Response

In this section, we measure and theoretically model the nonlinear thermal

response of graphene plasmons at different frequencies. The pump-probe mea-

surements presented here are similar to what discussed previously in this chapter

with two distinctions: (i) Pump is polarized parallel to ribbons (probe polariza-

tion: perpendicular to ribbons). Therefore, the pump pulse doesn’t excite plasmons
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in graphene ribbons and only elevates the electron temperature. (ii) Pump/probe

frequency is varied around the plasmon frequency (3.9 THz) from 2 THz to 4.9 THz.

Fig. 3.8a presents the measured relative change in transmission of probe for

different pump/probe frequencies. The largest change in transmission is observed

close to the plasmon frequency and becomes smaller by going off-resonance to either

sides of the resonance. The fact that for the same amount of off-resonance detuning,

a positive signal (same sign as on-resonance case) observed on the blue side but

a negative signal on the red side suggests a pump-induced red-shift of plasmon

frequency. This is consistent with the nonlinear red-shift of plasmon resonance

predicted by the thermal model for nonlinear plasmon response (section 3.2.4).

Fig. 3.8b plots the largest (positive or negative) relative change in transmission

as a function of frequency f . The black curve is theory calculations based on the

nonlinear thermal model described in section 2.2.4. The calculations exhibits a very

good agreement with the measured results using the deformation potential VD = 12

eV and disorder mean free path l=1 nm which are very close to the values we used

to simulate the nonlinear response for the CVD graphene ribbons in section 2.2.4.

As shown in Fig. 3.8b, the large on-resonance positive signal becomes negative

at 3.25 THz (0.65 THz below resonance) and 5.05 THz (1.15 THz above resonance).

This asymmetric feature around the plasmon frequency is a clear manifestation of

pump-induced red-shift (about 0.25 THz) of plasmon resonance due to increase in

electron temperature.
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Figure 3.8: (a) Measured relative change in transmission of the probe signal for

different pump/probe frequency as a function of pump-probe time delay ∆t. (b)

Measured peaks of relative transmission change as a function of pump/probe fre-

quency. The black curve shows the calculated value from the nonlinear thermal

model.
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3.4 Nonlinear Plasmonics Response in Higher Quality Graphene

The thermal model predicts that even greater resonant enhancement of the

nonlinear response can be expected in high-mobility graphene. Fig. 3.9 presents a

calculation of how the observed nonlinearity would be further enhanced by em-

ploying higher quality graphene nanoribbons with a realistic mobility of 25,100

cm2V−1s−1 [94]. The calculated power transmission is shown as a function of fre-

quency (in the vertical direction) and time (in the horizontal direction), assuming

an input fluence of 1.27 µJ/cm2. The upper horizontal plot shows the calculated

pump-induced change in transmission at the equilibrium plasmon resonance fre-

quency (marked by the horizontal white line), showing a nonlinear response in the

order of unity. The right vertical plot in Fig. 3.9 shows the calculated transmission

spectrum before and during the pump pulse (marked by the vertical white lines),

illustrating the nature of plasmonic enhancement in the nonlinearity. The resonant

absorption causes a significant increase in the carrier temperature, which leads to:

(i) a broadening of the the plasmon linewidth caused by an increased carrier scat-

tering (ii) a corresponding weakenening of the the plasmon resonance and (iii) a

red-shift of the plasmon resonance. While the first two effects also occur for tradi-

tional Drude absorption in graphene, albeit a lower frequencies, the third is unique

to plasmon resonances and only occurs in patterned graphene structures. For the

experimental conditions considered here, all three effects contribute similarly to the

observed response. For high quality graphene, as shown in the right panel of Fig. 3.9,

red-shift of plasmon frequency has the most substantial impact on transmission.
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Figure 3.9: Numerically predicted change in transmission as a function of frequency

f and time ∆t, calculated assuming a higher graphene mobility of 25,100 cm2V−1s−1.

The pump pulse causes a transient red-shift and broadening of the plasmon reso-

nance, as shown by the two vertical sections plotted on the right. The dashed curves

indicated in the right panel show the calculated Drude response for an unpatterned

graphene sheet, which shows no plasmon resonance, and very little pump-induced

change in transmission. A signal tuned to the resonant frequency would experience a

corresponding transient increase in transmission, as shown in the horizontal section

plotted on the top.
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3.5 Conclusion

To conclude, the temperature dependent absorption, cooling, and scattering

of hot electrons in graphene causes a nonlinear response to terahertz waves. Using

terahertz pump-probe measurements, we show that when graphene is patterned

into sub-wavelength structures that exhibit a plasmon resonance, this nonlinearity is

greatly enhanced at the resonant frequency. This enhanced nonlinearity is caused by

a stronger on-resonance absorption, followed by a spectral red-shift and broadening

of the plasmon resonance with electron temperature.

We provide a thermal model that explains the observed nonlinear enhance-

ment, and sheds light on the dominant cooling and scattering mechanisms for hot

electrons collectively excited in a graphene plasmon. The frequency-dependence

measurements on QFSBL-G confirms the nonlinear red-shift of plasmon resonance

predicted by the nonlinear thermal model.

The theory predicts that in higher-mobility graphene the nonlinearity in trans-

mission could approach unity, enabling high-speed terahertz-induced switching or

modulation.
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Chapter 4: Continous-wave Photomixing Spectroscopy of Graphene

Thermal Relaxation

4.1 Overview

Like most conductive materials, when graphene is illuminated with light, its

free electrons heat up. However, unlike most materials, hot electrons in graphene in-

teract weakly with the carbon lattice and can produce a measurable voltage through

the Seebeck effect. The speed and sensitivity of this effect is related to the phys-

ical cooling processes occurring in graphene, which are governed by scattering by

phonons and spatial disorder. Recent theoretical studies have predicted that the role

of disorder will depend on the carrier concentration, which in graphene can be elec-

trically tuned. Until now, there had been no conclusive experimental demonstration

of this effect.

Prior to this work, supercollision cooling was thought to be the dominant

electron-phonon relaxation process over a wide range of temperatures and carrier

densities [32, 95]. Evidence for conventional momentum-conserving cooling (which

is linear with temperature) has been observed only at low temperatures in high-

quality graphene [33]. In experimental measurements, the cooling process is inferred
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from how the photoresponse depends on temperature, power, or time for either

pulsed or continuous-wave illumination. Time-domain methods that are used to

study thermal relaxation dynamics typically employ intense optical pulses, which

significantly disturb the electron temperature, and can in some cases excite higher

energy optical phonons in addition to acoustic phonons [32,85,92,96]. Moreover, as

we show here, the factors that govern the power dependence of the photothermal

response can be different from those that determine the cooling rate. It has been

shown that, uniquely in graphene, the relative strength of the two competing cooling

channels can be controlled by the carrier concentration [31,33,37].

Here we employ a new nonlinear photomixing method to simultaneously quan-

tify the nonlinearity in the photoresponse and the carrier-density dependence of

electron cooling in graphene. This method easily distinguishes between sub-linear

and super-linear power dependence, which indicate supercollision cooling and con-

ventional cooling, respectively. Our measurements show that while supercollision

dominates the nonlinear response near the charge neutral point, at higher carrier

densities, conventional cooling channel is the dominant process. Furthermore, we

show that when two detuned near-IR lasers co-illuminate the graphene, the resulting

DC photovoltage depends upon their heterodyne difference frequency. This enables

direct measurement of the electron cooling rate in the frequency domain with orders

of magnitude weaker optical excitation (smaller temperature rise) than traditional

time-domain methods, by simply tuning the wavelength of one of the continuous-

wave lasers [97].
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4.2 Photomixing Experimental Setup

Fig. 4.1a depicts the heterodyne photomixing setup used here to characterize

the photothermal response of graphene. Two fiber-coupled continuous-wave near-

IR lasers, one wavelength-tunable (λ1 = 1540–1565 nm) and one fixed-wavelength

(λ2 = 1545 nm), were amplified, spatially combined, polarized, and focused using an

aspheric lens to a 3 µm spot on the graphene channel. The position of focused beam

was chosen to maximize the photovoltage, which occurs when the beam is focused

close to one of the contacts [98, 99]. The combined optical power illuminating the

first (second) device was about 6 mW (2.1 mW), from which we estimate the total

absorbed intensity to be I = 850 W/cm2 (I = 300 W/cm2). The graphene photode-

tector device was held in a liquid helium cryostat with short working distance opti-

cal access to controllably vary the lattice temperature TL between 10 K and room

temperature. The two lasers were mechanically chopped using a twin-slot (5/7)

chopping wheel at frequencies f1 = 500 Hz and f2 = 700 Hz. The photovoltage was

synchronously detected at both f1 and the difference f2− f1, using a dual-reference

digital lock-in amplifier (Signal Recovery 7270), which simultaneously records the

photovoltages V1 and V∆. The phases of the two lock-in detection channels were

calibrated to produce the correct sign, relative to one another. Measurements were

performed as a function of gate voltage VG, and the optical difference frequency

∆ν = Ω/2π, which was swept from −0.6 THz to +2.5 THz by tuning laser 1.
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Figure 4.1: (a) Two near-IR continuous-wave beams, one with tunable wavelength,

are modulated at two different frequencies f1 and f2, then overlapped and focused

down to the graphene photodetector. The photovoltages produced by laser 1 (V1)

and the mixing of two beams (V∆) are detected at the modulation frequencies f1

and f1 − f2 respectively. (b) Diagram of the HBN-encapsulated graphene (top)

and exfoliated graphene (bottom) photodetector devices. The optical beams are

illuminated close to one of the metal contacts, and carrier density of graphene is

altered by applying an electrostatic voltage (Vg) between doped silicon substrate

and graphene.
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4.3 Device Fabrication and DC Electrical Characterization

To better elucidate the role of disorder, we considered two different graphene

detectors shown in Fig. 4.1b: one using an edge-contacted hexagonal boron ni-

tride encapsulated graphene channel [94, 100], and a second fabricated from an un-

encapsulated exfoliated flake [13].

Both devices considered here employed a doped silicon substrate (ρSi = 100

Ω·cm), with 300 nm of thermally grown SiO2 as a gate dielectric. The substrate

served as a large-area gate contact for adjusting the carrier concentration.

The HBN-encapsulated device [100] was fabricated per the method described

in [94]. A piece of polypropylene carbonate (PPC) coated polydimethylsiloxane

(PDMS) was first used to pick up HBN, monolayer graphene and another piece

of HBN, in that order. The resulting heterostructure was then transferred to the

aforementioned SiO2 substrate, where electron beam lithography (EBL) was used

to define a hydrogen silsesquioxane (HSQ) hard mask on poly(methy methacrylate)

(PMMA). The surrounding areas were then etched in CHF3 plasma to shape the

device channel and expose the graphene edge. Afterwards, HSQ was lifted off and

EBL was used again to define the contact leads and pads using PMMA, and 1.5

nm/20 nm/50 nm Cr/Pd/Au was e-beam evaporated and lifted off for edge contact.

The HBN-encapsulated graphene channel length was 7 µm and width 0.7 µm .

For the second device, a single layer of graphene was mechanically exfoliated

from bulk graphite and transferred directly to the SiO2/Si substrate. The exfoli-

ated graphene exhibits a mobility about µ = 5, 000 cm2V−1s−1, which was inferred
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Figure 4.2: The DC resistance R as a function of the applied gate voltage Vg and

the optical micrograph for (a) the HBN-encapsulated graphene device and (b) the

exfoliated graphene on SiO2 device.

from DC transport measurements. Electron-beam lithography was used to pattern a

bi-layer resist comprised of methyl methacrylate (MMA) and polymethy methacry-

late (PMMA). The contacts were deposited using successive angled evaporations

of chromium (15 nm) and gold (30 nm), thereby providing dissimilar contacts to

the opposing edges of the graphene channel. Dissimilar electrical contacts are not

necessary when the optical beams are focused onto one contact, as for the measure-

ments reported here, but this configuration also provides the thermal asymmetry

needed for detection of spatially homogeneous or longer wavelength illumination.

The graphene channel length was 2.5 µm and width 7 µm.

To quantify the electrical characteristics and gating behavior, we conducted

unilluminated measurements of the DC resistance as a function of the gate voltage,

for both the HBN-encapsulated device and the non-encapsulated device. Fig. 4.2

shows the DC measurements, along with optical micrographs showing the graphene

active region, contact geometry, and cross-sectional diagram.
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4.4 Nonlinear Thermal Photomixing Model

The electron temperature T in the graphene evolves according to the nonlinear

differential equation [31,34,86]

αT
dT

dt
+ β1(T − TL) + β3(T 3 − T 3

L) = I(t) (4.1)

where TL is the lattice temperature, αT is the specific heat of graphene carriers, the

coefficients β1 and β3 are the rate coefficients for conventional and supercollision

cooling mechanisms, respectively, and I(t) is the absorbed near-infrared optical

intensity.

It is assumed that the electrons are in the degenerate regime (EF � kBT ),

and that electron-electron collisions are fast enough to allow the temperature of

the electron gas to be well defined [5, 34]. The hot-electron diffusion length is

ξ = (κ/γαT )1/2 = vF (γΓ)−1/2, where κ is the electronic thermal conductivity, Γ

is the carrier scattering rate, and the Wiedemann-Franz law was used in the second

equality. Even for the encapsulated device considered here, by estimating Γ from DC

measurements in Fig. S3, we estimate that 500 nm < ξ < 1.5 µm which is smaller

than the optical beam size employed. We therefore ignore spatial inhomogeneity in

I(t) and thermal diffusion of hot carriers out of the laser beam.

The three model parameters α, β1 and β3 appearing in (4.1) depend implicitly

on the Fermi level EF (determined by gating) and disorder mean-free path l (related

to the quality of the graphene) as α = 2πk2
BEF/(3~2v2

F ), β1 = V 2
DE

4
FkB/(2πρ~5v6

F ),

β3 = ζ(3)V 2
DEFk

3
B/(π

2ρ~4v3
F s

2l), where vF is the Fermi velocity, ρ is the areal mass
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density, s is the speed of sound in graphene, ζ(3) ' 1.202 is the Riemann zeta func-

tion, and VD is the acoustic deformation potential. We note that the substrate sur-

face polar phonons may also play a role in hot electron cooling in graphene [101,102],

and their effect on the photoresponse can be regarded as a linear cooling term in

(4.1) [103]. Therefore, the coefficient β1 might also have some contribution from

the substrate phonons. At temperatures far below the Bloch-Grüneisen tempera-

ture (4.1) must be modified to include a cooling term proportional to T 4 [86]. We

estimate that even at the lowest temperatures and carrier concentrations experimen-

tally considered here (T = 25 K, EF ∼ 60 meV), the Bloch-Grüneisen temperature

matches or exceeds the measurement temperature.

For the two-laser illumination shown in Fig. 4.1a, the absorbed intensity is

I(t) = I1 + I2 + 2
√
I1I2 cos Ωt, where I1 and I2 represent the absorbed intensities of

lasers 1 and 2 respectively and Ω ≡ 2πc(λ−1
2 − λ−1

1 ) is their heterodyne difference

frequency. The resulting photothermoelectric voltage V produced by the Seebeck

effect is then related to the electron temperature by V = rT (T − TL), where rT is

the Seebeck coefficient of graphene [28, 104]. This nonlinear relationship between

temperature and photovoltage could be generalized to include a nonlinearity in

the Seebeck coefficient [105], but the temperature- and power-dependence of the

observed nonlinearity indicate that this effect is small in comparison to the nonlin-

earity in cooling. Although other photoresponse mechanisms, such as photoelectric

effect [106], might also contribute to the graphene photoresponse, a photo-thermo-

electric model can adequately describe the photoresponse at the graphene-metal

interface [13,38,107].
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Equation (4.1) can be solved using a power series expansion (Supplementary

Material), and resulting DC photovoltage is found to be

V (I1, I2) = a1(I1 + I2) + a2(I2
1 + I2

2 )− a3(I3
1 + I3

2 ) . . .

+ 2a2I1I2

[
1 +

γ2

Ω2 + γ2

]
− 3a3I1I2(I1 + I2)

[
1 +

2γ2

Ω2 + γ2

] (4.2)

where γ ≡ (β1 + 3β3T
2
L)/αTL is the linearized cooling rate from both mechanisms.

The coefficients a1, a2 and a3 are given by

a1 ≡
r

αγ
, a2 ≡

rβ1

(αγTL)3
, a3 ≡

3rβ2
3

T 2
Lα

5γ5
(4.3)

The final two terms in (4.2) which contain the factor I1I2, represent a nonlinear

interaction of the two beams, which occurs only when both beams are present.

In order to sensitively detect only these mixing products, we employ a double-

modulation configuration in which laser 1 is mechanically chopped at a frequency

f1, laser 2 is chopped at f2, and the photovoltage V is synchronously detected

using a lock-in amplifier at the chopping difference frequency ∆f ≡ f1 − f2 (not to

be confused with the heterodyne difference frequency). The resulting photovoltage

V∆ ≡ V (I1, I2) − V (I1, 0) − V (0, I2) can be positive or negative, depending on

the nonlinearity in the photothermal response. We also simultaneously measure

the Fourier component at f1, denoted V1 ≡ V (I1, 0), which gives the photovoltage

produced by laser 1 alone.

By simply comparing the magnitude of the two terms that compose the lin-

earized cooling rate γ, one can determine a condition for which process makes the

largest contribution to the cooling rate. For nearly all of the experimental cases

considered here and reported elsewhere, the cooling rate is largely limited by the
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supercollision term. (4.3) reveals that despite this, the photoresponse can be either

super-linear or sub-linear in intensity, depending on the carrier density and graphene

quality. As explained below, neither cooling effect can be ignored when analyzing

the nonlinearity of the response.

When the heterodyne frequency exceeds the cooling rate (Ω � γ), (4.2) sim-

plifies to V (I) = a1I + a2I
2 − a3I

3, where I ≡ I1 + I2 is the total absorbed optical

intensity. The quadratic and cubic terms have opposite sign, and therefore de-

scribe super-linear or sub-linear dependence on the optical intensity. From (4.3),

one sees that the super-linear coefficient is proportional to β1, which we associate

with momentum-conserving cooling, while the sub-linear coefficient is proportional

to β3, which arises from supercollision cooling.

4.5 Measurement Results

4.5.1 Nonlinear Signal vs Carrier Density

Fig. 4.2a plots V1 (black) and V∆ (green) as a function of the gate voltage for

the HBN-encapsulated device. These measurements were performed with Ω/2π =

2.5 THz, which is much faster than the expected cooling rate at room-temperature.

The sign of the photothermal voltage V1 depends on the gate voltage, as expected

from the photothermoelectric effect [13,28,29]. For carrier densities near the charge-

neutral point (CNP), V1 and V∆ have opposite sign (as indicated by the blue shad-

ing), revealing a sub-linear power dependence, characteristic of supercollision cool-

ing [32,38]. In this regime the Fermi surface is small, and the allowed phonon energy
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space for momentum-conserving collision is strongly constrained, thereby suppress-

ing conventional electron-phonon cooling [31, 37]. At higher carrier densities, the

behavior changes to super-linear (red shading), indicating that conventional cooling

becomes dominant. Fig. 4.2b plots the single-beam photovoltage as a function of the

incident optical power, confirming the sub- and super-linear behavior, respectively.

Fig. 4.2c illustrates the two cooling mechanisms schematically in k-space, along with

the predicted sublinear and superlinear power dependence. The transitions outside

of the Dirac cone represent supercollision cooling, in which the spatial disorder in

the graphene compensates for the electron-phonon momentum mismatch.

The threshold between these two nonlinear regimes can be approximated by

equating the opposing terms in V∆, which gives,

2a2 ≷ 3a3I (4.4)

where the upper and lower inequalities describe the conditions under which conven-

tional cooling or supercollision cooling prevails in the nonlinear response, respec-

tively. The relative importance of the two competing cooling channels depends on

temperature, intensity, the carrier concentration (Fermi level), and indirectly on the

material quality, which is related to the disorder mean-free-path l. Even though the

linearized cooling rate γ is limited by supercollision cooling, both effects are evident

in the nonlinear response reported here.

Fig. 4.4 present results of similar measurement performed on lower-mobility

exfoliated graphene on SiO2. In this device, the diffusion length is estimated to be

only 500 nm, which is about one order of magnitude smaller than for the encapsu-
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Figure 4.3: (a) Single-laser photovoltage (V1), and nonlinear photomixing signal

(V∆) measured vs. the applied gate voltage Vg. VCNP denotes the charge neutral

point. Red (V1V∆ > 0) and blue (V1V∆ < 0) regions indicate the conditions where

super- and sub-linear power dependence is observed. (b) Measured photovoltage V1

of a single laser vs. incident optical power at two different gate voltages, showing

sublinear and superlinear behavior. (c) Calculated photothermoelectric voltage (in

arbitrary units) vs. input optical power for the case of β1 = 0 (blue) and β3 = 0

(red), illustrating the sublinear and superlinear behavior, respectively. Inset: energy

diagram illustrating the two different cooling mechanisms.

79



lated device. Because of this difference, the majority of the photoresponse in this

device originates from the Fermi-level pinned region near the contact, where the car-

rier concentration is not as easily controlled by the applied gate voltage. For positive

gate voltages, Fermi level pinning produces a pn junction and charge-neutral region

near the contact [74, 108], which contributes to the observed sub-linear response.

Otherwise, the response is qualitatively similar to that of the HBN-encapsulated

device, and we observe a similar expected transition from supercollision cooling to

conventional cooling under negative gate bias.

From the data in Fig. 4.4, the sublinear-superlinear transition occurs at Vg =

−6 V where the estimated Fermi level is EF = 80 meV. Assuming a disorder mean-

free-path of l = 40 nm (which was independently determined from DC electrical

measurements), we can use (4.4) to determine the ratio of the two rate coefficients,

β1/β3 = 5300 K2. At room temperature, the supercollision contribution to the

cooling rate γ is nearly 50× larger than the contribution from conventional cool-

ing. Despite this, both effects have non-negligible role in the nonlinearity of the

photoresponse, and their relative significance depends on the carrier density.

4.5.2 Nonlinear Signal vs Difference Frequency

When the heterodyne difference frequency Ω is comparable to or smaller than

the cooling rate γ, the electron temperature can follow the interferometric beating

of the two lasers, which produces a larger photothermal voltage than when the lasers

are widely detuned. The final two terms in (4.2) reveal that the nonlinear mixing
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Figure 4.4: (a) Single-laser photovoltage (V1), and nonlinear photomixing signal

(V∆) measured vs. the gate voltage Vg, for the exfoliated graphene on SiO2. (b)

Measured photovoltage |V1| vs. optical input power, showing clearly the sub-linear

and super-linear behaviors.

signal V∆ exhibits a Lorentzian dependence on the heterodyne difference frequency

Ω, with a spectral width that is proportional to the cooling rate γ. As before,

the double-chopping configuration allows for sensitive detection of this heterodyne

photomixing signal.

Fig. 4.5a plots the measured photovoltage V∆ as a function of the gate voltage

and heterodyne difference frequency, for the non-encapsulated graphene detector.

In addition to the expected gate-voltage dependence discussed previously, the pho-

toresponse exhibits distinct spectral peak around Ω = 0. Fig. 4.5b shows the pho-

tomixing spectrum at a fixed gate voltage, along with the best-fit Lorentzian curve.

From the linewidth, we estimate a cooling time of γ−1 =1.42 ps, which is consistent

with the time-domain pulse coincidence measurements [13,109] reported for similar
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82



devices.

4.5.3 Temperature Dependence Measurements

In order to confirm the thermal model for the photomixing, we repeated the

heterodyne spectral measurements at temperatures from room temperature down

to 25 K for the exfoliated sample on SiO2 near the charge neutral point. As shown

in Fig. 4.6a, in all cases the photomixing signal exhibits a Lorentzian spectral de-

pendence, but with a spectral width that decreases with temperature, as expected.

The solid blue curve in Fig. 4.6b shows a fit to the linearized cooling rate, based on

the model presented here.

For the data points above TL = 80K, and for conditions at the charge neutral

point, the assumption of EF � kBT (degenerate regime) is no longer valid, which

requires a modification of the cooling rate. We therefore excluded these points when

fitting the blue curve. However, when the parameters from the low-temperature

fit were incorporated into the modified thermal model, it correctly predicts the

observed high-temperature asymptotic behavior, indicated by the red curve, with

no additional free parameters. Below we briefly explain the theory fit in Fig. 4.6.

4.5.3.1 Linear Cooling Rate close to the Dirac Point

The thermal model presented in the manuscript ignores the fact that when

the graphene is gated at the charge neutral point, the carriers are no longer degen-

erate, and under these conditions, the specific heat (αT ) and conventional cooling
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coefficient (β1) must be modified to [39,86,110]:

αT → α2T
2, where α2 ≡ 18ζ(3)k3

B/π~2V 2
F (4.5)

β1 → β5T
4, where β5 ≡ 7π3k5

BV
2
D/30ρ~5v6

F (4.6)

and the nonlinear thermal equation under these conditions becomes

α2T
2dT

dt
+ β5T

4(T − TL) + β3(T 3 − T 3
L) = I(t) (4.7)

If (4.7) is linearized about the lattice temperature, one obtains

α2T
2
L

dx

dt
+ (β5T

4
L + β3T

2
L)x = I(t) (4.8)

where x = T − TL is the photoinduced change in electron temperature relative to

the lattice. The linearized cooling rate is then

γ′ =
β5T

2
L + 3β3

α2

(4.9)

which is shown by the red curve in Fig. 4.6.

We expect that at low temperatures, kbT will be much smaller than E∗F , the

charge-puddle-limited Fermi level, in which case the cooling can instead be accu-

rately described by γ. The boundary between the two regimes can be estimated by

equating γ and γ′ (4.9), which, for the parameters considered in Fig. 4.6 indicates

that γ should only be applicable for TL < 80 K. This condition is represented by

the intersection between the blue and red curves in Fig. 4.6.

When the parameters determined from the low-temperature fit to the cooling

rate γ are used in (4.9), with no additional free parameters, we correctly predict the

observed cooling rate above 80 K, which further supports the model.
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4.6 Discussions

This nonlinear heterodyne photovoltage spectroscopy method has two impor-

tant advantages over the traditional time-domain measurement using pulse coinci-

dence [13, 32, 109]: (i) The frequency range and resolution is limited only by the

tuning range and resolution of the laser, while in time-domain measurements the

response is limited by the optical pulsewidth and repetition period. (ii) Continuous-

wave illumination produces a far smaller thermal stimulus to the graphene electrons

than intense ultrafast pulses, thereby allowing measurement of the temporal dynam-

ics and nonlinearity of photodetection under low photothermal excitation for which

the electron temperature is near the lattice temperature.

The model and measurements described here show that there are two com-

peting cooling channels for hot electrons in graphene, and (4.4) describes the rel-

ative importance of each in the nonlinear response. In time-domain experiments

reported elsewhere, the instantaneous absorbed intensity is orders of magnitude

higher that the continuous-wave illumination considered here, in which case (4.4)

predicts that supercollision cooling is the dominant contribution to the nonlinear-

ity at all practically attainable doping concentrations. Moreover non-encapsulated

graphene samples have a much smaller disorder mean-free-path l, which further

contributes to the relative importance of supercollision cooling over conventional

momentum-conserving cooling. In these cases, the photothermal response is often

adequately described by supercollision cooling alone, for a wide range of carrier den-

sities and temperatures [38,84,95]. For continuous-wave measurements on encapsu-
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lated devices, (4.4) also predicts that at sufficiently low temperatures, conventional

cooling will prevail, consistent with temperature-dependent measurements reported

recently [33].

4.7 Conclusion

We show that nonlinearity in the photothermoelectric effect causes photomix-

ing when graphene is illuminated by near-infrared beams, and we describe a new

heterodyne spectroscopy method that accurately measures this nonlinearity in the

frequency domain. Exceedingly small nonlinearities in the photoresponse can be

probed using continuous-wave illumination, which accurately elucidates the physical

mechanisms behind the nonlinearity and cooling. In particular, the measurements

reveal the role that disorder plays in the cooling of hot electrons, and the interplay

of different cooling channels at different carrier concentrations. The method permits

direct measurement of the cooling rate in graphene using swept laser spectroscopy,

which offers several advantages over pump-probe or pulse-coincidence measurements.

The work also implies that nonlinear photomixing in graphene is very promising for

the development of new optical/THz photomixing devices.
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Chapter 5: Time-resolved Optical Study of Carrier Dynamics in the

Weyl Semimetal TaAs

5.1 Overview

Tantalum arsenide (TaAs) is the first Weyl semimetal discovered, and it can be

regarded as the three-dimensional version of graphene that has a crystal structure

without inversion symmetry. Owing to the nontrivial topology of electronic wave

functions, Weyl semimetals shows new physical properties related to the Berry curva-

ture associated with the Weyl nodes [42–44,111]. Unlike many other Weyl semimet-

als, the Fermi energy of TaAs lies in an energy regime where two topologically non-

trivial pockets with opposite chirality exist at Fermi surface [112, 113]. Therefore,

many electronic and optical properties that are sensitive to dynamics of electrons

at the Fermi surface can exhibit topological behavior [45–47, 112, 114]. This makes

TaAs a very attractive material to investigate for various optical/optoelectronic ap-

plications. For this purpose, it is essential to know how carriers interact with each

other and lose their energy to lattice in TaAs. To date, there has been no time-

resolved study of carriers dynamics and related relaxation time constants in Weyl

semimetals.
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Here we present the first ultrafast optical study of carriers dynamics in a Weyl

semimetal. We employ optical reflectance pump-probe measurements at variety of

temperatures to study carriers dynamics of the broken-inversion-symmetry Weyl

semimetal Tantalum arsenide (TaAs). Our measurements reveal different time con-

stants that describe relaxation of hot carriers to TaAs lattice. We attribute the fast

time constant (≈ 2 ps at 10 K) to relaxation of hot electrons to optical phonons,

and the slower one (≈ 200 ps at 10 K) to acoustic phonons. Our temperature

dependence measurements reveal that both relaxation processes become slower at

higher temperatures. We also present a qualitative thermodynamic model based on

thermalized carriers to explain the observed reflectance pump-probe results.

5.2 Optical Conductivity of a 3D Dirac Semimetal

We first present semi-classical formulas of conductivity for a three-dimensional

semimetal with a Dirac cone energy dispersion [43,115,116].

5.2.1 Interband Conductivity

The inertband optical conductivity of a semimetal with a single Dirac cone

and chemical potential µ0 at zero temperature can be approximated as

σinter(ω;T = 0) =
e2

24π~vF
ωH(ω − 2|µc|/~) (5.1)

where H(x) is Heaviside step function, and vF is the Fermi velocity. At finite

temperature T , (5.1) is modified to [116]

σinter(ω) =
e2

24π~2vF
ω

sinh(~ω/2kBT )

cosh(µc(T )/kBT ) + cosh(~ω/2kBT )
(5.2)
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where µc(T ) is the chemical potential at temperature T . In high temperature limit

where kBT � µc(T ), (5.2) can be simplified to

σinter(ω) =
e2

24π~vF
ω tanh(

~ω
2kBT

) (5.3)

which is a result similar to the 2D Dirac case [53,117].

5.2.2 Intraband Conductivity

The intraband optical conductivity at zero temperature is approximated by a

Drude formula

σintra(ω;T = 0) =
e2

3π2~3vF

µ2
0

Γ− iω (5.4)

where Γ is the scattering rate of carriers. At finite temperature T , we can

approximate the intraband conductivity by a temperature-dependent Drude model,

σintra(ω;T ) =
e2

3π2~3vF

µ2
c(T ) + (π2k2

B/3)T 2

Γ(T )− iω (5.5)

Assuming conservation of particle number, the chemical potential at temper-

ature T is calculated as [116]

µc(T ) ≈ µ0 −
π2k2

B

3µ0

T 2 kBT � µ0 (5.6)

µc(T ) ≈ µ3
0

π2k2
B

1

T 2
kBT � µ0 (5.7)

The temperature dependence of the scattering rate Γ(T ) depends on the phys-

ical mechanism behind carrier scattering, which can be through phonons, short- and
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long-range Coulomb disorders [115]. The relative importance and strength of these

processes depend on the material type and quality.

We calculate Drude weight (≡ D(T )) from (5.5)-(5.7) as

D(T ) ≈ e2

3π~3vF
[µ2

0 − (π2k2
B/3)T 2] kBT � µ0 (5.8)

D(T ) ≈ e2

3π~3vF
(π2k2

B/3)T 2 kBT � µ0 (5.9)

5.2.3 Comparison to a 2D Dirac semimetal

We now compare the conductivity formulas presented in previous section to

graphene conductivity discussed in chapter 2. There are two clear differences be-

tween conductivity of 3D and 2D Dirac systems:

(I) The interband conductivity of a 3D Dirac semimetal is linearly proportional

to frequency (5.1), whereas in 2D materials, it is frequency independent.

(II) The temperature dependence of Drude weight at high temperatures is

quadratic in T (5.9), while in 2D, it is linear.

Linear optical reflection spectroscopy of 3D Dirac/Weyl semimetals have con-

firmed these effects [118–120].

5.2.4 Conductivity of Multiple Dirac/Weyl bands

Finally, we explain briefly how the semi-classical equations for the conductivity

of a semimetal with single Dirac cone presented previously can be modified to the

case of a semimetal with N Dirac/Weyl cones. The optical conductivity is the
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summation of contributions from each band [116].

In time-reversal-broken Weyl semimetals, in the absence of an applied mag-

netic field, the chemical potential of all Weyl bands are equal. Therefore, the total

optical conductivity is simply N times the contribution from a single Weyl band.

In case of inversion-symmetry-broken Weyl systems, there can be an energy

offset between different Weyl pairs [44, 116], and as a result, the effective Fermi

level of carriers in each Weyl band (energy difference between Fermi level and the

Weyl node ) can be different. This has to be taken into account when adding up

contributions of Weyl bands to the total conductivity.

5.3 Introduction to the Weyl Semimetal TaAs

5.3.1 Crystal Properties and Band Structure

As depicted in Fig. 5.1a, Tantalum arsenide (TaAs) possesses a non-centrosymmetric

tetragonal lattice structure. In the right panel of Fig. 5.1a, we show the calculated

bulk band structure of TaAs in the absence of spin-orbit coupling, adopted from [48].

The blue rectangle marks four crossings of spin-degenerate valence and conduction

bands in the Brillouin zone (BZ). By including spin-orbit coupling in the calcu-

lations, each of the four points breaks into three pairs of linearly dispersive Weyl

nodes, where each pair consists of two nodes with opposite single chiral charges of

±1 . Four pairs of these Weyl nodes (W1) are located in the kz = 0 plane, while

other eight pairs (W2) are at kz = ±π/c, adding up to 24 Weyl nodes in total for

the first BZ [48–50,111,121].
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Figure 5.1: (a)Tetragonal crystal structure of TaAs, consisted of Ta and As stacks.

The lattice of TaAs is non-centrosymmetric. (b) Electronic band structure of TaAs

without spin-orbit coupling. The blue box marks the band-touching point. Figures

were adapted from [48]. (c) Two kinds of Weyl pairs (W1 and W2) with 12 meV

energy offset exist in TaAs. Gray line shows the charge neutrality, and red dashed

line shows the Fermi level EF [112].
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Fig. 5.1b depicts the position of two types of Weyl pairs (W1 and W2) in

TaAs with respect to each other and the Fermi energy level (red dashed line). The

energy level offset between two Weyl pairs, caused by broken inversion symmetry,

is ≈ 12 meV [112]. Due to this energy offset, there are always free carriers in the

system regardless of the Fermi energy level. The W1 and W2 Weyl pairs exhbit

two different carrier concentrations: As illustrated in Fig. 5.1b, the Fermi level

EF is about 26 meV/14meV above the W1/W2 Weyl pair, confirmed by quantum

oscillation measurements [112]. Thus, both Weyl pairs form electron-like pockets at

the Fermi surface [112,113].

As illustrated in Fig. 5.1b, for both W1 and W2 Weyl pairs, Fermi energy is

below the saddle point of Lifshiftz gap energy (≈ 20 meV/50 meV for W1/W2 Weyl

pairs). This leads to two topological electron pockets with opposite chirality, which

is a distinctive property of TaAs compared to other discovered Weyl semimetals

[112]. We note that full band structure calculations show that, in addition to the

Weyl bands, there are topologically trivial bands crossing the Fermi level in TaAs,

including a low energy one that forms a hole pocket at the Fermi surface [112, 113,

121].

5.3.2 Optical Properties

In this section, we discuss linear optical response of TaAs. In Fig. 5.2, we

plot reflection spectrum of the (001) face of a TaAs crystal measured using standard

FTIR technique. The measured reflection spectrum exhibits high values at low
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frequency mainly due to the intraband absorption of free carriers in TaAs. Based

on the position of the Weyl points and Fermi energy illustrated in Fig. 5.1b, for

frequencies above 6.8 THz (28 meV photon energy), the interband absorption of

carriers in the W2 Weyl band is expected to play a role in the optical response. For

frequencies above 12.6 THz (52 meV photon energy), the interband absorption can

occur in both Weyl bands of W1 and W2.

The effect of interband and intraband absorption of electrons in Weyl bands

on the conductivity of TaAs can be estimated using the equations presented in

section 5.2. In [118], the optical response of TaAs and its temperature dependence

was measured in a wide range of frequency. In this study, authors found some

unique optical properties of 3D Dirac/Weyl systems in TaAs, such as linear frequency

dependence of interband conductivity and quadratic temperature dependence of

Drude weight [118].

As discussed earlier, the Fermi energy, in addition to Weyl bands, crosses other

(trivial) bands in TaAs [112, 121]. Xu et al noticed that for frequencies over ≈ 7

THz, interband transition of carriers in trivial bands contribute noticeably to TaAs

optical response.

5.4 Ultrafast Pump-probe Measurements

We experimentally study carriers dynamics in TaAs using optical pump-probe

techniques. The picture of TaAs crystal studied here is depicted in Fig. 5.3a. The

optical measurements were done on the crystal facet with (001) orientation.
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Figure 5.2: Measured reflection spectrum of (001) face of a TaAs crystal in (a)

linear, (b) semi-logarithmic plot.
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Figure 5.3: (a) TaAs crystal considered here. The crystal orientation is marked

on each facet. The measurements were done on the (001) facet marked with red.

An enlarged image of the crystal facet considered here is shown at the bottom. (b)

0.8-1.6 eV reflection pump-probe setup. (c) 1.6/0.8 eV reflection pump/probe setup.
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The pump-probe measurements were carried out using two fiber lasers (Menlo

Systems). The lasers produce approximately 100 fs wide pulses at a repetition rate

of 100MHz and center wavelengths of 780 nm (1.6 eV) and 1560 nm (0.8 eV). The

two lasers were electronically synchronized with a small difference in the repetition

rate, allowing for large pump-probe delays (up to 10 ns) to be achieved without

the use of a mechanical delay line. The two pulses were spatially overlapped and

focused onto the 001 facet of the TaAs crystal using a reflective objective (WD=2.5

cm, NA=0.28), rather than a usual refractive lens, to insure that the two beams with

different wavelengths focus to the same spot on the TaAs sample. The spot size of

both beams at the focus are measured as FWHM≈7 µm. We employ two different

pump-probe schemes to study carriers dynamics of the TaAs crystal pictured in

Fig 5.3a:

(i) 0.8-1.6 eV pump-probe (Fig. 5.3b): In this configuration, the change in

reflection of the 780 nm pulse induced by a strong 1560 nm pulse is measured as a

function of the time delay between two pulses. The 1560 nm (0.8 eV) pump pulse

is mechanically chopped at 435 Hz and has much higher fluence than the 780 nm

(1.6 eV) probe. The reflected beams off of the TaAs sample are passed through a

short-pass filter to block/pass pump(0.8 eV)/probe(1.6 eV). The 1.6 eV probe pulse

passes the filter and is being collected at a silicon photoreceiver. The detector is

connected to a lock-in amplifier that monitors the modulated pump-induced change

in reflection of the 1.6 eV probe.

(ii) 1.6-0.8 eV pump-probe (Fig. 5.3c): In this scheme, we swap the pump

and probe pulse: 1.6 eV pulse is the strong pump (chopped at 435 Hz) and 0.8 eV
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pulse is the probe. The measurement setup similar to the ones in (i) except: a)

a long-pass filter (AR-coated silicon at 1560 nm) is used to pass through the 0.8

eV probe and block the 1.6 eV pump. (b) a Silicon photoreceiver is replaced by a

germanium detector that is sensitive at 1560 nm.

The photon energy of both pulses are much higher than the Fermi energy and

the Lifshitz gap energy. Therefore, we don’t expect to induce or probe chirality in

the described pump-probe measurements. In the following, we present measurement

results of the two pump-probe setups described above and discuss what information

each provides about the carrier dynamics and ultrafast nonlinear optical effects in

TaAs.

5.4.1 Pump(0.8 eV)-Probe(1.6 eV)

Fig. 5.4a shows the relative change in reflection of the 1.6 eV probe pulse ∆R/R

as a function of time delay for a variety of 0.8 eV pump pulse peak intensities. A

small instantaneous decrease in reflectivity is observed at zero pump-probe time

delay followed by a change in sign and a strong positive peak in ∆R/R. Both the

negative minimum and positive maximum increase monotonically with the pump

intensity. The pump intensity dependence of maximum and minimum are plotted

in Fig. 5.7 and will be discussed further.

Unlike the ultrafast initial negative pump-probe signal, the transient increase

in reflection and subsequent decay are characterized by finite time constants. In

order to investigate time constants of these processes, we fit the pump-probe data

98



0 10 20 30
delay (ps)

∆R
/R

 (×
10

-4
)

(a) (b)

−6

−4

−2

0

2

4

6

8

2.2 GW/cm2

1.3 GW/cm2

0.8 GW/cm2

0.4 GW/cm2

6.8 GW/cm2

5.4 GW/cm2

3.8 GW/cm2

1 765432
I(GW/cm2)

1

7
6
5
4
3
2

8
9

10
11

tim
e 

co
ns

ta
nt

 (p
s) τ1

τ0

[c+ae  −be  ]
−t
τ1

−t
τ0

Figure 5.4: (a) Relative change in reflection ∆R/R (0.8-1.6 eV nm pump-probe)

for a variety of pump peak intensities as a function of pump-probe time delay. The

dashed grey curve is an example (for I = 6.8 GW/cm2) of bi-exponential fit used

here. (b) Extracted time-constants from bi-exponential fit to pump-probe data

shown in part (a). The shorter time constant τ0 is temperature independent within

the error of measurements.

at small positive time delays with a bi-exponential function with two different time

constants of τ0 and τ1, of the form aexp(−t/τ1)− bexp(−t/τ0) + c. An example (for

I = 6.8 GW/cm2) of the bi-exponential fit employed here is shown by a dashed grey

curve in Fig. 5.4a. In Fig. 5.4b, we plot extracted time constants as a function of

pump peak intensity I from bi-exponential fits to data in Fig. 5.4a. As shown in

Fig. 5.4b, while the shorter time constant τ0 appears to be independent of pump

intensity within the error of measurements, τ1 significantly increases from 2 ps to

10.5 ps by raising the pump intensity.

The relative change in reflection ∆R/R continues to decrease back to zero

with a much slower time constant than those observed in Fig. 5.4, i.e. τ0 and τ1.

To investigate the slow relaxation, we measure ∆R/R in a much longer range of
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Figure 5.5: (a) Relative change in reflection ∆R/R (0.8-1.6 eV pump-probe) shown

for large positive time delays (& 10 ps). The dashed grey curve is an example (for

I = 5.4 GW/cm2) of exponential fit to the first 1 ns of data used here.(b) Extracted

time constants from exponential fits to data in part (a). The time constant τ2 is

independent of pump intensity I within the error of measurements.

time delays up to 9 ns. These results are plotted in Fig. 5.5a for three different

pump powers. We fit the first 1 ns time delay of ∆R/R pump-probe data with an

exponential to extract the slow time constant τ2. Fig. 5.5b plots the extracted time

constant τ2 as a function of the peak pump intensity I is constant within the error

of our measurements. In addition to time delay dynamics associated with τ2, we

note that the data presented in Fig. 5.5a exhibit a much slower (few nanoseconds)

evolution with time delay, that stretches the relaxation of ∆R/R to long time delays.

5.4.1.1 Discussion

Now we present a qualitative description of physical mechanisms behind the

observed pump-induced change in reflection signal and various relaxation times ob-

served in our measurements. The picture described here is based on thermalized
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distribution of pump-induced hot electrons. We note that a similar model was em-

ployed to explain graphene pump-probe data [117].

The pump pulse excites electrons to a high energy state. These electrons

start to thermalize through electron-electron scattering processes and develop an

electronic temperature Te that is much larger than the initial (lattice) temperature.

This process occurs in a fast timescale (¡100 fs) that is beyond the resolution of

our pump-probe data (pulsewidth limited). The elevation of electron temperature

causes two competing processes that can change the probe pulse reflection:

(I) pump-induced Pauli blocking (interband): Hot electrons populate a wide

range of energy states in the conduction band with an energy bandwidth propor-

tional to kBTe. The tail of thermally populated states can extend to probe energy,

and decrease the interband absorption of the probe pulse due to Pauli blocking.

(II) pump-induced change in Drude weight (intraband): When the electron

temperature increases, Drude weight and probe reflection increase, as explained in

(5.9).

The first process can be modeled by a temperature-dependent interband con-

ductivity, similar to (5.3), and second one with a temperature-dependent Drude

weight (5.9). In both cases, number of Weyl bands and their different chemical

potentials need to be taken into account, according to explanations in 5.2.4.

As described above, while the first process causes a fast decrease in reflection,

the second one increases the probe reflection. Pauli blocking is expected to dom-

inate the pump-probe response at high electron temperature rise as the interband

conductivity decreases approximately exponentially in Te (equation (5.3)).
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We now employ the thermal picture described above to explain the observed

pump-probe signals: At zero time delay, pump pulse increases the electron tem-

perature to a point that process (I) dominates and causes a a small reduction of

probe reflection. Thus, a pump-induced modification of the probe interband ab-

sorption (Pauli blocking) can explain the observed initial ultrafast negative ∆R/R.

After thermalization and rise of Te, hot electrons start to relax back to low energy

levels through emitting phonons. This process is accompanied by reduction of the

initially-elevated electron temperature. As Te decreases, process (I) becomes weaker

and (II) starts to dominate the change in reflection. This leads to a zero-crossing

in ∆R/R where the effect of (I) and (II) processes are balanced, and subsequently

a positive ∆R/R. At a specific electron temperature, mechanism (II) completely

dominates over (I), that leads to a maximum positive ∆R/R. As Te continues to de-

crease via hot electron-phonon relaxation, Drude weight decreases, and the positive

∆R/R slowly returns to zero.

Based on the above explanations, we attribute τ0, τ1, and τ2 to electron-phonon

relaxation times. We note that the values of τ0 and τ1 are within reasonable range

for relaxation of hot carriers to optical phonons in a Dirac/Weyl system, whereas τ2

is relaxation through acoustic phonons [122]. Compared to graphene, the relaxation

of hot electrons to optical phonons are much slower, since the frequency/energy

of optical phonon (≈ 7 THz) in TaAs is much lower than that in graphene (≈ 50

THz) [123,124].

As shown in the last section of this chapter, temperature dependence of τ1 is

very similar to its pump intensity dependence presented in Fig. 5.4b. This observa-
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Figure 5.6: Relative change in reflection ∆R/R (1.6-0.8 eV pump-probe) for a variety

of pump peak intensities shown in pump-probe time delays (a)around zero, and

(b)larger than ≈5 ps where small positive change in reflection is observed.

tion suggests that the effect of pump intensity is primarily to increase the electron

temperature, which is consistent with the thermodynamic picture for pump-probe

signal described above.

In the time scale of τ2 (hundreds of picosecond), electron temperature has

significantly dropped from its value at zero time delay, and is already close to the

lattice temperature. Therefore, τ2 is not expected to depend strongly on intensity

of pump pulse, which is consistent with data presented in Fig. 5.5.

5.4.2 Pump(1.6 eV)-Probe(0.8 eV)

Now we present measurement results for the 1.6 eV pump-0.8 eV probe con-

figuration depicted in Fig. 5.3c. In Fig. 5.6, we show the measured ∆R/R for time

delays around zero (a) and for long positive time delays (b).

All results, including the three extracted time constants (τ0,τ1,τ2), are simi-

lar to those measured in 0.8 eV-1.6 eV pump-probe scheme, except that the initial
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ultrafast negative change in reflection is much stronger. As described in the previ-

ous section, the ultrafast dip is caused by pump-induced transient Pauli blocking

that causes an ultrafast reduction of probe pulse absorption/reflection. The Pauli

blocking in 1.6 eV-0.8 eV pump-probe scheme is stronger for two reasons:

(i) Based on thermalized distribution of carriers: For the same temperature

rise, a lower energy probe experiences an exponentially stronger reduction of phase

space due from the distribution of thermalized carriers because it is closer to the

Fermi surface. This behavior is expected from the interband conductivity formula

(5.3). (ii) In the process of thermalization (non-equilibrium thermodynamics): when

pump energy is higher than probe, as the pump-induced hot carriers thermalize and

relax to low energies, they can limit the available phase space for probe-induced

interband electronic transitions at the probe wavelength.

In Fig. 5.7, we plot positive maximum and negative minimum of ∆R/R as a

function of pump peak intensity I for the two pump-probe schemes (data extracted

from Fig. 5.4a and Fig. 5.6a). For the same pump peak intensity, which causes

approximately same electron temperature rise, maximum of ∆R/R is similar for

the two pump-probe schemes. This is expected from the thermodynamics picture

described in the previous section, as the change in Drude weight is similar in both

cases. However, for same pump intensities, negative minima are much larger for

1.6 eV-0.8 eV pump-probe measurements, since Pauli blocking is much stronger

for a lower energy probe case. We also note that all data in Fig. 5.7 exhibit lin-

ear dependence on pump intensity, except minimum of 0.8 eV-1.6 eV pump-probe

measurements.
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5.5 Temperature Dependence Measurements

In this section, we investigate how the measured pump-probe signals and

relaxation times depend of the lattice temperature. Fig. 5.8a shows the 0.8 eV

pump-induced relative change in reflection of 1.6 eV probe at different measured

temperatures in arbitrary units. Two clear effects are observed as we decrease the

temperature of sample in cryostat: (i) The initial ultrafast negative Pauli blocking

transient diminishes gradually and disappears at low temperatures. This is due to

the fact that energy distribution of thermalized carriers becomes narrower at low

temperatures, which results in weaker pump-induced Pauli blocking.

(ii) The relaxation of hot electrons (to optical phonons) become faster at low

temperatures. In Fig. 5.8b, we plot extracted time constants τ0 and τ1 from bi-

exponential fits to data in Fig. 5.8a as a function of temperature. We notice that the

temperature-dependence of the two time constants is very similar to pump intensity-

dependence presented in Fig. 5.4b. From this result, we infer that effect of pump

intensity on τ1 relaxation times is primarily thermal (related to the elevation of

carriers/lattice temperature). This is consistent with an electron-phonon relaxation

picture for τ1 time constant: As temperature increases, either through increasing

pump intensity or sample temperature, thermal relaxation becomes slower.

We now investigate the temperature dependence of slow carrier relaxation

process with time constant τ2 discussed in Fig. 5.5. In Fig. 5.9a, we show the

relative change in reflection (normalized to the maximum value at small time delays)

for different sample temperatures in a long range of pump-probe time delays up to
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Figure 5.8: (a) Relative pump-induced change in reflection at variety of temperatures

for 0.8-1.6 eV pump-probe case. The dashed grey curve is an example (for T = 1005

K) of bi-exponential fit used here. (b) Extracted time constant vs temperature

from bi-exponential fits to data in part (a). The longer time constant τ1 exhibits

a quadratic dependence on temperature (dashed curve), while the shorter one τ0 is

temperature independent within the error of measurements.
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5 ns. The relaxation time clearly becomes longer at higher temperatures, and to

investigate this, we employ same type of exponential fitting as in Fig 5.5 to find the

relaxation time τ2 as a function of temperature. This result is presented in Fig. 5.9b

which shows an increase of relaxation time τ2 with temperature.

5.5.1 Temperature Dependence of Time Constants

The thermal relaxation time is τ = C/G where C and G are electronic specific

heat and thermal conductivity to phonons respectively. The increase of both τ1 and

τ2 with temperature is consistent with superlinear temperature dependence (T 3) of

the specific heat C in 3D Dirac/Weyl system [122]. This suggests a weak dependence

of thermal conductivity on temperature for hot electrons relaxation through optical

and acoustic phonons in TaAs.

The increase of thermal relaxation time with temperature in TaAs is similar

but much larger than what observed in conventional metals [125–127]. This is due to

strong cubic dependence of specific heat on temperature in 3D Dirac systems [122].

We note that, while at low temperature the exponential curve fits the data

accurately up to long time delays, at high temperatures ∆R/R deviates from a

simple exponential dependence. We observed the same behavior for ∆R/R when

we varied the pump intensity from low to high values (Fig. 5.5). We associate the

non-exponential behavior that stretches the pump-probe signal at long time delays

is due to the generation of hot phonons (lattice heating) in TaAs, and the associated

time constant (few nanoseconds at room temperature) can be the speed of phonon-
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fits to data in part (a).

phonon interaction in TaAs [128–130].

Finally, we should mention that the recombination of excited carriers can

also decrease the Drude weight and explains the decay of ∆R/R back to zero. In

that case, τ1 and/or τ2 can be regarded as carriers recombination times in TaAs.

However, the observed increase of τ1 and τ2 with temperature is not expected from

carrier recombination processes.
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5.6 Conclusion

We use time-resolved optical pump-probe techniques to study the dynamics

and relaxation of carriers in TaAs. Based on our qualitative thermodynamic model,

observed change in reflection of probe is a result of two competing processes of

pump-induced Pauli blocking and change in the Drude weight. Our measurements

revealed that the relaxation of hot electrons through optical/acoustic phonons occur

in ≈ 2 ps/200 ps at 10 K and becomes slower at elevated temperatures.
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Chapter 6: Future Directions

In this chapter, we briefly describe some potential future directions for each

of the projects discussed in last four chapters.

6.1 Tunable Terahertz Optoelectronics using Metal-Graphene Plas-

mons

As discussed in Chapter 2, the hybrid metal-graphene plasmonic scheme can

provide maximal absorption in graphene at a THz frequency that is tunable. This

property is very attractive for realizing various tunable THz optoelectrnic devices

such as detectors, absorbers, and emitters. Furthermore, using high mobility (low

loss) graphene, these plasmonic structure would allow 100% transmission at a tun-

able frequency. This can enable tunable THz bandpass filters and modulators.

The key element for realizing practical THz applications of hybrid metal-graphene

plasmons is to have access to high quality graphene (such as HBN-encapsulated

graphene) in large areas. This is still a challenge, but is expected to be resolved in

the near future.
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6.2 Non-thermal Optical Nonlinearities in Graphene Plasmons

In chapter 3, we extensively studied nonlinear optical response of plasmonic

resonances in graphene ribbons, and we concluded that a non-instantaneous thermal

process dominates the nonlinear response. On the other hand, it has been theoret-

ically suggested that graphene plasmons exhibit very strong non-thermal (instan-

taneous) nonlinearities, such as Kerr effect. Exploring these ultrafast nonlinearites

are of great fundamental and practical interests. Two promising approaches could

be to try: (1) using high mobility HBN-encapsulated graphene ribbons, (2) other

resonance geometries instead of ribbons.

6.3 Terahertz Heterodyne Detection via 3-wave Mixing in Graphene

In chapter 4, we showed that mixing of two near-IR continuous waves (with

frequencies f1 and f2) in graphene photo-thermo-electric devices produces a DC

voltage that is a Lorentzian function of the difference frequency centered at f1−f2 =

0.

Because of graphene’s broadband optical absorption, the photo-thermo-electric

mixing scheme is expected to be operable in other frequency regimes including THz.

Furthermore, based on our theory, the nonlinear mixing can work for more than two

waves. These two generalizations of photo-thermo-electric wave mixing in graphene

can enable THz heterodyne detection. In the following, we describe a 3-wave mixing

scheme in graphene for THz detection, along with a preliminary measurement result.
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We use the same HBN-encapsulated graphene device shwon in Fig. 4.2. The

experimental scheme is similar to the one depicted in Fig. 4.1 with two differences:

(1) the two NIR beams are not mechanically chopped, and (2) in addition to two NIR

beams, a third THz continuous-wave beam (mechanically-chopped) at fTHz = 2.54

THz is also focused on the graphene sample. In the absence of two NIR beams,

the lock-in amplifier measures a DC photovoltage produced by the mechanically-

modulated THz beam. When two NIR beams are present on the graphene sample,

they mix with the THz wave though photo-thermo-electric nonlinearity and can

change the measured DC photovoltage. In Fig. 6.1, we show the measured pho-

tovoltage as a function of difference frequency of the two NIR waves. A similar

Lorentzian as in Fig. 4.5 is observed, but, rather than zero frequency, it is centered

at fTHz = 2.54 THz.

The peak of the Lorentzian function in Fig. 6.1 is proportional to the product

of the NIR beam intensities. We expect that, using intense NIR waves, the Lorenti-

zan signal will be observable even if the intensity of THz beam is exceedingly small.

Therefore, the 3-wave mixing scheme described above can enable heterodyne mea-

surement of the intensity and frequency of an exceedingly small incoming THz wave

using two strong NIR waves as “local oscillators”.

6.4 Time-resolved Optical Study of Weyl Semimetals

The optical pump-probe study on TaAs presented in chapter 5 is the only time-

resolved optical study that has been done on a Weyl semimetal. There are many
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Figure 6.1: Measured photovoltage as a function of difference frequency of the two

NIR waves.

other possible time-resolved optical studies on Weyl semimetals, including various

pump-probe experiments at different photon energies from THz to visible, that

can be used to fully determine heating/cooling rates and recombination dynamics

of the carriers. There are also novel optical effects to experimentally explore in

Weyl semimetals such as Berry curvature induced optical gyrotropy [46], anomalous

Hall effect in inversion-broken-symmetry systems [47], topological nonlinear optical

effects [131], and circular photogalvanic effects.

6.4.1 Measurement of SPP Dispersion in Weyl Semimetals

Among the new phenomena predicted by the Berry phase in Weyl semimetals

is surface plasmon polaritons (SPPs) with new magneto-plasmon-features in the ab-

sence of an applied magnetic field. Berry curvature associated with the Weyl nodes

produce effective magnetic monopoles in momentum space and drastically modify

114



the surface plasmon dispersion. The plasmon diepsersion relations can be obtained

experimentally using a THz-TDS technique which, in addition to the amplitude, can

measure the phase of a THz wave as it poropagates [132, 132, 133]. One attractive

measurement is to pattern gratings on a Weyl semimetal crystal using a focused-

ion-beam tool to couple the incident terahertz radiation to SPPs, and then use a

THz-TDS technique to measure the dispersion relation of SPPs propagating on the

crystal surface.
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Appendix A: Derivations–Graphene Nonlinear Photomixing Model

The electron temperature in the graphene may be modeled by the following

nonlinear differential equation:

αT
dT

dt
+ β1(T − TL) + β3(T 3 − T 3

L) = I(t) (A.1)

where T represents the graphene electron temperature, TL is the lattice temperature,

and I(t) is the absorbed optical power per unit area. αT is the specific heat in the

graphene and the terms proportional to β1 and β3 describe momentum-conserving

cooling and disorder-assisted supercollision cooling, respectively.

We re-write these equations in terms of x ≡ T − TL, the deviation from the

lattice temperature:

α(TL + x)
dx

dt
+ β1x+ β3

[
(TL + x)3 − T 3

L

]
= I(t) (A.2)

We next assume that x � TL, i.e., the photoinduced change in electron temper-

ature is small in comparison to the equilibrium (lattice) temperature. With this

assumption, x(t) may be expanded in a power series in the intensity I,

x(t) = x(1)(t) + x(2)(t) + x(3)(t) + . . . (A.3)

Where x(n) ∝ In, and we are retaining terms up to third order. Substituting this
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expansion into (A.2) gives

α(TL + x(1) + x(2) + x(3))
d

dt
(x(1) + x(2) + x(3)) + β1(x(1) + x(2) + x(3))+

β3

[
(TL + x(1) + x(2) + x(3))3 − T 3

L

]
= I(t) (A.4)

Next, we expand (A.4) and separately equate the orders to obtain the following

inhomogeneous linear differential equations for x(1), x(2) and x(3),

αTL
dx(1)

dt
+ (β1 + 3β3T

2
L)x(1) = I(t) (A.5)

αTL
dx(2)

dt
+ (β1 + 3β3T

2
L)x(2) = −αx(1)dx

(1)

dt
− 3β3TL

[
x(1)
]2

(A.6)

αTL
dx(3)

dt
+ (β1 + 3β3T

2
L)x(3) = −αx(1)dx

(2)

dt
− αx(2)dx

(1)

dt
− 6β3TLx

(1)x(2) − β3

[
x(1)
]3

(A.7)

which can be re-written as:

dx(1)

dt
+ γx(1) =

I(t)

αTL
(A.8)

dx(2)

dt
+ γx(2) = − 1

TL
x(1)dx

(1)

dt
− 3β3

α

[
x(1)
]2

(A.9)

dx(3)

dt
+ γx(3) = − 1

TL
x(1)dx

(2)

dt
− 1

TL
x(2)dx

(1)

dt
− 6β3

α
x(1)x(2) − β3

αTL

[
x(1)
]3

(A.10)

where

γ ≡ β1 + 3β3T
2
L

αTL
(A.11)

represents the equivalent (linearized) cooling rate, taking into account both cooling

mechanisms.

For the two-laser illumination considered here, the optical intensity absorbed

in the graphene is given by

I(t) = I1 + I2 + 2
√
I1I2 cos Ωt (A.12)
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where I1 is the absorbed intensity of laser 1, I2 is the absorbed intensity of laser 2,

and Ω ≡ ω1 − ω2 is the heterodyne beat frequency between the two lasers.

Substituting this expression into (A.8), one can find a solution for x(1)(t),

which is used in turn to find x(2)(t) from (A.9), and x(3)(t) from (A.10).

The photovoltage produced through the Seebeck effect can be expressed as

V (t) = rT (T − TL) = rx(x+ TL) (A.13)

where rT is the Seebeck coefficient of graphene. Substituting x = x(1)+x(2)+x(3)+. . .

into (A.13), evaluating only the DC component of V (t), and retaining only terms

up to the third order in I, one finds, after simplification:

V (I1, I2) = r

{
I1 + I2

αγ
+ β1

(I1 + I2)2

(αγTL)3
− (3β2

3T
4
L + 7T 2

Lβ1β3)
(I1 + I2)3

T 6
Lα

5γ5
. . . (A.14)

+ 2I1I2

[
β1

(αγTL)3
− (9T 4

Lβ
2
3 + 15T 2

Lβ1β3 + 2β2
1)

(I1 + I2)

T 6
Lα

5γ5

]
γ2

Ω2 + γ2
. . .

(A.15)

− 2I1I2

[
(6T 2

Lβ1β3 − 2β2
1)

(I1 + I2)

T 6
Lα

5γ5

](
γ2

Ω2 + γ2

)2}
(A.16)

For the room-temperature conditions reported here (TL = 300 K), we may make

the additional approximation that β1 � β3T
2
L. In this regime, the linearized cooling

rate (γ) is determined primarily by supercollision cooling, even though both cool-

ing processes contribute to the measured nonlinearity in the response. With this

assumption, (A.14)-(A.16) simplify to:

V (I1, I2) = r

{
I1 + I2

αγ
+ β1

(I1 + I2)2

(αγTL)3
− 3β2

3

(I1 + I2)3

T 2
Lα

5γ5
. . . (A.17)

+ 2I1I2

[
β1

(αγTL)3
− 9β2

3

(I1 + I2)

T 2
Lα

5γ5

]
γ2

Ω2 + γ2

}
(A.18)
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The photoinduced voltage can be rewritten as

V (I1, I2) =a1(I1 + I2) + a2(I2
1 + I2

2 )− a3(I3
1 + I3

2 ) . . . (A.19)

+ 2a2I1I2

[
1 +

γ2

Ω2 + γ2

]
− 3a3I1I2(I1 + I2)

[
1 +

2γ2

Ω2 + γ2

]
(A.20)

where the coefficients a1, a2 and a3 are given by

a1 ≡
r

αγ
, a2 ≡

β1

(αγTL)3
, a3 ≡

3β2
3

T 2
Lα

5γ5
(A.21)

When the two beams I1 and I2 are double-chopped and synchronously de-

tected at the chopper difference frequency, the lock-in amplifier produces a signal

proportional to (A.20):

V∆ = V (I1, I2)− V (I1, 0)− V (0, I2) + V (0, 0) (A.22)

= 2a2I1I2

[
1 +

γ2

Ω2 + γ2

]
− 3a3I1I2(I1 + I2)

[
1 +

2γ2

Ω2 + γ2

]
(A.23)

The DC photovoltage therefore has a Lorentzian dependence on the heterodyne

difference frequency Ω ≡ ω1 − ω2, with a spectral width that is proportional to the

carrier cooling rate γ, as shown schematically in Fig. A.1
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Figure A.1: DC photovoltage V∆ as a function of the heterodyne difference frequency

Ω = ω1 − ω2.

120



Bibliography

[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos,
I.V. Grigorieva, and A.A. Firsov. Graphene plasmonics for terahertz to mid-
infrared applications. Science, 306(5696):666–669, 2004.

[2] K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V.
Morozov, and A.K. Geim. Two-dimensional atomic crystals. Proc. Natl. Acad.
Sci., 102(30):10451–10453, 2005.

[3] K.S.A. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grig-
orieva, S. Dubonos, and A. Firsov. Two-dimensional gas of massless Dirac
fermions in graphene. Nature, 438(7065):197–200, 2005.

[4] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K.
Geim. The electronic properties of graphene. Rev. Mod. Phys, 81(1):109, 2009.

[5] S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi. Electronic transport in
two-dimensional graphene. Rev. Mod. Phys., 83:407–470, May 2011.

[6] Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M.
Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro
Neto, C. N. Lau, F. Keilmann, and D. N. Basov. Gate-tuning of graphene
plasmons revealed by infrared nano-imaging. Nature, 487:82–85, 2012.

[7] J. Chen, M. Badioli, P. Alonso-Gonzlez, S. Thongrattanasiri, F. Huth, J. Os-
mond, M. Spasenovi, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza,
N. Camara, F. J. Garca de Abajo, R. Hillenbrand, and F. H. L. Koppens.
Optical nano-imaging of gate-tunable graphene plasmons. Nature, 487:77–81,
2012.

[8] L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang,
A. Zettl, Y. R. Shen, and F. Wang. Graphene plasmonics for tunable terahertz
metamaterials. Nature Nanotech., 6:630–634, 2011.

121



[9] H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu,
P. Avouris, and F. Xia. Tunable infrared plasmonic devices using
graphene/insulator stacks. Nature Nanotech., 7:330–334, 2012.

[10] T. Low and P. Avouris. Graphene plasmonics for terahertz to mid-infrared
applications. ACS Nano, 8(2):1086–1101, 2014.

[11] R. R. Hartmann, J. Kono, and M. E. Portnoi. Terahertz science and technology
of carbon nanomaterials. Nanotechnology, 25:322001, 2014.

[12] L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap,
M. Polini, V. Pellegrini, and A. Tredicucci. Graphene field-effect transistors
as room-temperature terahertz detectors. Nature Mater., 11:865–871, 2012.

[13] X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti,
R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew,
and M. S. Fuhrer. Sensitive room-temperature terahertz detection via the
photothermoelectric effect in graphene. Nat. Nanotechnol., 9(10):814–819,
2014.

[14] B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang,
D. Jena, L. Liu, and H. G. Xing. Broadband graphene terahertz modulators
enabled by intraband transitions. Nat. Commun., 3:780, 2012.

[15] S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee,
C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min. Switching terahertz waves
with gate-controlled active graphene metamaterials. Nature Mater., 11:936–
941, 2012.

[16] S.-F. Shi, B. Zeng, H.-L. Han, X. Hong, H.-Z. Tsai, H. S. Jung, A. Zettl, M. F.
Crommie, and F. Wang. Optimizing Broadband Terahertz Modulation with
Hybrid Graphene/Metasurface Structures. Nano Lett., 15:372–377, 2014.

[17] S.A. Mikhailov and K. Ziegler. Nonlinear electromagnetic response of
graphene: frequency multiplication and the self-consistent-field effects. J.
Phys. Condens. Matter., 20(38), 2008.

[18] E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov. Coher-
ent Nonlinear Optical Response of Graphene. Phys. Rev. Lett., 105(097401),
2010.

[19] H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh. Large energy
mode locking of an erbium-doped fiber laser with atomic layer graphene. Opt.
Express, 17(17630-17635), 2009.

[20] S.-Y. Hong, J. I. Dadap, N. Petrone, P. Yeh, J. Hone, and R. M. Osgood.
Optical Third-Harmonic Generation in Graphene. Phys. Rev. X, 3(021014),
2013.

122



[21] H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout, and P. Kock-
aert. Z-scan measurement of the nonlinear refractive index of graphene. Opt.
Lett., 37, 2012.

[22] G. Jnawali, Y. Rao, H. Yan, and T. F. Heinz. Observation of a Transient
Decrease in Terahertz Conductivity of Single-Layer Graphene Induced by Ul-
trafast Optical Excitation. Nano Lett., 13(2):524–530, 2013.

[23] S.-F. Shi, T.-T. Tang, B. Zeng, L. Ju, Q. Zhou, A. Zettl, and F. Wang.
Controlling Graphene Ultrafast Hot Carrier Response from Metal-like to
Semiconductor-like by Electrostatic Gating. Nano Lett., 14(3):1578–1582,
2014.

[24] H. Y. Hwang, N. C. Brandt, H. Farhat, A. L. Hsu, J. Kong, and K. A. Nelson.
Nonlinear THz Conductivity Dynamics in P-Type CVD-Grown Graphene. J.
Phys. Chem. B, 117(49):15819–15824, 2013.

[25] F. Kadi, T. Winzer, E. Malic, A. Knorr, F. Göttfert, M. Mittendorff, S. Win-
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