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Experimental studies can provide powerful insights into the physics of complex networks. Here, we
report experimental results on the influence of connection topology on synchronization in fiber-optic
networks of chaotic optoelectronic oscillators. We find that the recently predicted nonmonotonic, cusplike
synchronization landscape manifests itself in the rate of convergence to the synchronous state. We also
observe that networks with the same number of nodes, same number of links, and identical eigenvalues of
the coupling matrix can exhibit fundamentally different approaches to synchronization. This previously
unnoticed difference is determined by the degeneracy of associated eigenvectors in the presence of noise

and mismatches encountered in real-world conditions.
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Recent research [1] has shown that network structure
plays a significant role in cascading failures [2], epidemics
[3], and recovery of lost network function [4].
Synchronization of coupled dynamical units is a wide-
spread phenomenon that has served as an example par
excellence of this line of research [5]. For example, by
modeling network synchronization in terms of diffusively
coupled identical oscillators, it has been shown that the
stability of fully synchronous states is entirely determined
by the eigenvalues of the coupling matrix [6,7]. A funda-
mental yet largely unexplored question concerns the ro-
bustness of such network-based predictions.

New insight into this question has been provided by a
recent study on networks that optimize the synchronization
range [8]. It is predicted that synchronization properties,
such as the coupling cost at the synchronization threshold
and range of coupling strength for stability, will exhibit a
highly nonmonotonic, cusplike dependence on the number
of nodes and links of the network [8], contrary to the
prevailing paradigm. The existence of such cusps indicates
that small perturbations of the network structure, which
might be experimentally unavoidable, may lead to large
changes in the network dynamics.

In this work, we experimentally demonstrate that the
rate of convergence to synchronous states, a broadly sig-
nificant synchronization property, follows the theoretically
predicted nonmonotonic trend. More importantly, we ob-
serve that networks with identical eigenvalue spectra (gen-
erally assumed to behave in similar fashion) can exhibit
qualitatively different convergence properties. We classify
these networks into two groups, which we term nonsensi-
tive networks and sensitive networks, respectively. This
classification is based on the properties of the eigenvectors
of the coupling matrix and the observation that networks
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with different eigenvector degeneracies will respond dif-
ferently to perturbations typical of experimental condi-
tions. In contrast to sensitive networks, nonsensitive
networks are predicted and experimentally observed to
be robust against these perturbations. Observational noise
and mismatch of coupling strengths are the main experi-
mental factors underlying these different responses.

Our experimental setup consists of a network of N = 4
optoelectronic feedback loops. The feedback loops are
similar in construction to those used by Argyris et al. for
chaotic communication [9]. Each feedback loop (Fig. 1)
comprises a semiconductor laser which provides a steady
optical power, a Mach-Zehnder electro-optic intensity
modulator, two photoreceivers, a digital signal processing
(DSP) board which provides electronic filtering and time
delay, and an amplifier. The optical output of each electro-
optic modulator is proportional to cos*(x; + ¢,), where x;
is the normalized electrical input voltage that characterizes
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FIG. 1 (color online). Schematic of a single optoelectronic
node. Each node is coupled to the rest of the network (not
shown) through fiber-optic links.
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each oscillator and ¢, is the operating point of the modu-
lator. The modulator output is split to act as the feedback
signal and as the coupling signal to the other nodes, with
each coupling link either enabled or disabled by using
optical attenuators. All the couplings are set to have the
same strength. At each node, the feedback and the coupling
signals are processed by using the DSP board. The parame-
ters of each loop are set such that the oscillators exhibit
high-dimensional chaos. The equations that describe each
node in the experimental network are derived in Ref. [10]
and are given by
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Here, u;(7) is a 2 X 1 vector describing state of the filter at
node i, and x;(r) is the observed variable. The oscillators
are diffusively coupled through the network specified by
the coupling matrix L. = (€;;); the diagonal element €;; =0
is the net incoming coupling strength to node i, and the off-
diagonal element €;; is the negative of the directional
interaction strength from node j to node i. Thus, if there
is a link from j to i, the influence of oscillator j on
oscillator i is proportional to [u;(r) — u;(r)]. Matrices A,
B, and C represent the filter in state space. The filter
band is from w;/27 = 0.1 kHz to w,/27 = 2.5 kHz.
Regarding the other parameters, 8 = 3.6 is a lumped
effective feedback strength that combines the gain factors
of various components, € is a global coupling strength, d =
Tr(LL)/N is a normalization factor defined by the average
coupling per node, ¢, is a phase bias set to be /4, and
7 = 1.5 ms is the net feedback delay. Equations (1) and (2)
are a network generalization of the one- and two-oscillator
systems considered in Refs. [10,11]. This network model
admits synchronous solutions x;(¢) = x,(¢) = - - - = xy(?),
whose experimental realization is the focus of this study.

Consider a network of N oscillators and m = Tr(L)
directed links, of which our experimental system is an
example. Since all the rows of matrix L. sum to 0, L has
at least one null eigenvalue. The eigenvalue spectrum
A ={0, Ay, A3, ..., Ay} of L determines whether the syn-
chronous solutions for a given network configuration are
stable [6,7]. Consider the eigenvalue spread [8]

1 i - z

2 = — |2
ag —mlzzzl/\l /\l , Where)\ (3)

_1)

which measures the range of coupling strength e for stable
synchronization and hence the synchronizability for gen-
eral directed networks. Smaller eigenvalue spread implies
higher synchronizability. Focusing on networks with the

smallest eigenvalue spread for a given number of nodes
and links, Ref. [8] shows that the eigenvalue spread itself
has cusplike minima with ¢ =0 when m=k(N —1),
where k= 1,2,..., N. The networks minimizing o for
a given number of nodes and links are termed optimal if
o = 0 and suboptimal if o > 0 (all the others are termed
nonoptimal). In Fig. 2(a), we show a sequence of 4-node
optimal and suboptimal networks with a decreasing num-
ber of links, which are considered in our experiment. The
eigenvalue spread o of these networks exhibit pronounced
nonmonotonicity as a function of the number of links
[Fig. 2(b)].

In our experiments, we consider stable synchronous
states, for which the synchronization error

1
0(1) = m%b%(f) — x; (0] 4)

ideally approaches zero. For real networks that synchro-
nize, this error converges to a synchronization floor 6,
determined by experimental mismatches and noise. The
nodes are uncoupled and evolve independently before time
t = 0. At time ¢t = 0, the couplings in the network are
enabled by switching € from 0 to 0.7, and the network
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FIG. 2. Nonmonotonic behavior of synchronization properties.
(a) A path from a fully connected network (m = 12) to an
optimal tree network (m = 3). At each step, the link removed
is indicated by a dashed line. (b) The eigenvalue spread o for the
networks in (a). (¢c) Experimentally measured mean convergence
rate to synchronization & and associated standard deviation
(bars) for the same networks.
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starts converging to a synchronous solution. Figure 2(c)
shows the experimentally measured rate of convergence to
synchronization for the sequence of optimal and subopti-
mal networks shown in Fig. 2(a). This rate of convergence
is defined as the exponent u of the exponential decay to
the synchronization floor, (6 — 6y) ~ exp(—ut). (See
Ref. [12] for the computation of u from experimental
measurements.) The results indicate only small variability
across different realizations. More important, contrary to
what has been usually assumed, the measured mean con-
vergence rate fi is found to change highly nonmonotoni-
cally, with periodic peaks at the points where the number of
links is a multiple of (N — 1) [8]. The eigenvalue spread o
is seen to be inversely related to the convergence rate to
synchronization; i.e., the larger the spread, the slower the
approach to synchronization. Results for larger networks
are included in Ref. [12], Fig. S1.

If experimental noises, delays, and mismatches could be
neglected, the synchronization properties would be entirely
determined by the eigenvalues of the coupling matrix [6,7].
In particular, each network in the sequence of Fig. 2(a) is
characterized by eigenvalues that minimize the spread o.
The sequence of optimal and suboptimal networks consid-
ered in our experiments of Fig. 2(c) was generated by
starting from a fully connected network and successively
removing links while keeping the coupling matrix diago-
nalizable, so that the stability of the synchronous states can
be analyzed within the standard master stability approach
[6]. However, there are in fact many more optimal and
suboptimal networks with the exact same eigenvalues of
those considered in Fig. 2(a) but that are not diagonalizable
because they have a number of independent eigenvectors
smaller than N [7]. For instance, out of four 4-node optimal
networks with three links [Fig. 3(a)], one is diagonalizable
and three are not. (For the set of all optimal and suboptimal
binary 4-node networks, see [12], Table S1.) Given that o
depends only on the eigenvalues, one might expect that
experimental realizations of nondiagonalizable networks
would exhibit properties similar to those observed for the
diagonalizable counterparts.

In Fig. 3(b), we experimentally compare the approach to
synchronization of two networks, a directed star and a directed
linear chain, which have the maximum and minimum number
of independent eigenvectors, respectively. These two networks
are optimal and have the same number of nodes and links and
identical eigenvalues. We performed 100 independent measure-
ments of (#(z)) starting with different initial conditions for both
networks, where (-) indicates smoothing (see Ref. [12]).
However, both the convergence to synchronization and the
oscillations after synchronization are systematically different
for these two networks. We refer to networks with nondiago-
nalizable coupling matrices as sensitive networks, since the
experiments show that they are more susceptible to the influ-
ence of imperfections typical of realistic conditions. On the
other hand, networks with diagonalizable coupling
matrices are found to be fairly robust under the same conditions
and are referred to as nonsensitive networks. Mathematically,
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FIG. 3 (color online). Differentiating behavior between sensi-
tive and nonsensitive networks. (a) All optimal binary networks
with 4 nodes and 3 links. Each network is labeled according to its
geometric degeneracy g,. (b) Experimentally measured (0(z))
for sensitive (green, g, = 3) and nonsensitive (blue, g, = 1)
configurations, where the coupling is enabled at 7= 0.
(c) Numerical simulation of the same networks and conditions
considered in (b). Inset: The difference Au between the decay
exponents of the networks considered in (b) when simulated in
the absence of mismatches, noises, and time delays, as a function
of 6(t), regarded as a tunable initial synchronization error.

these two different types of networks can be categorized ac-
cording to their geometric degeneracy g,, which is the largest
number of repeated eigenvalues of the coupling matrix associ-
ated with the same (degenerate) eigenvector. For the star net-
work, each eigenvalue is associated with a linearly independent
eigenvector, and hence g, = 1. In the case of the linear chain,
all three nonzero eigenvalues are associated with the same
eigenvector, and hence g, = 3. While we focus on optimal
and suboptimal networks, where sensitive networks are ex-
pected to be more common because of their highly degenerate
eigenvalue spectra, this classification also applies to nonoptimal
networks in general.

Compared to the nonsensitive case, the sensitive networks
exhibit slower convergence to synchronization and, across
different realizations, larger variations around the average syn-
chronization trajectory [Fig. 3(b)]. In particular, while the non-
sensitive network has an exponential convergence to
synchronization, the sensitive network has a nonexponential
convergence, which is in agreement with the polynomial tran-
sient theoretically predicted for such networks [7]. Moreover,
the bundle of trajectories 6(z) is broader by a factor of 10 for the
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FIG. 4 (color online). Dependence of synchronization proper-
ties on experimental parameters. Setting observational noise
n = 0.06, coupling mismatch ¢ = 0.01, and time delay 7 =
1.5 ms (dashed lines), which approximate the values estimated
from the experiment, we simulated the effect of varying these
parameters one at a time. (a) The effect of 1 on the ensemble
mean synchronization floor 8,; (b) the effect of 1 on the standard
deviation of the floor &; (¢) the effect of { on &; and (d) the effect
of 7 on @, The superscript n (s) denotes the nonsensitive
(sensitive) network.

sensitive network over the nonsensitive network in the transient
to synchronization. This difference, we hypothesize, is due to
the different responses exhibited by these different types of
networks to experimental perturbations, since in the absence of
mismatches, noises, and delays the asymptotic rate of conver-
gence is expected to be the same. The latter is confirmed in the
inset in Fig. 3(c).

To test our hypothesis, we simulated Egs. (1) and (2) in the
presence of observational noise and coupling mismatch. The
coupling mismatch is taken to be independent perturbations to
the nonzero off-diagonal elements of €;; in Eq. (1) drawn from
a Gaussian distribution with zero mean and standard deviation
{. The observational noise is modeled as the difference be-
tween the actual x;(7) in the system, described by Eq. (2), and
the observed x;(), drawn from a Gaussian distribution with
zero mean and standard deviation 7. We choose these values
to be n = 0.06 and £ = 0.01, which are experimental esti-
mates. As shown in Fig. 3(c) (and, for larger networks, in
Ref. [12], Fig. S2), with this parameter choice our simulation
of the system mimics the key features observed in the experi-
ment to a remarkable degree.

The parameter dependence is further investigated in
Fig. 4, where we simulated the dependence of the average
synchronization floor and the variation around it for sensi-
tive and nonsensitive networks of Figs. 3(b) and 3(c) as a
function of the noise 7, mismatch ¢, and the feedback
delay time 7. The floor itself is mainly determined by the
observational noise. The difference in the variations around
the floor is mainly determined by the coupling mismatch.
The time delay, on the other hand, is found to have very
limited influence on these properties. As shown in
Ref. [12], Fig. S3, similar results hold for larger networks.
Our simulations also show that oscillator mismatch and
dynamical noise comparable to { and 1 would lead to a
very large difference between the average synchronization

floor of sensitive and nonsensitive networks; since this is
not observed experimentally, we posit that these two
factors are likely to be extremely small in the experiment.
Incidentally, this also illustrates the distinct nature of the
problem considered in this study compared to eigenvector-
dependent synchronization in externally forced systems
[13] and in systems with oscillator mismatches [14,15].
On the other hand, while we classify networks according
to the degeneracy of the eigenvectors, we note that
nonsensitive networks can exhibit different levels of non-
normality, ranging from the extreme in which all eigen-
vectors are orthogonal to the case in which two or more of
them are nearly parallel. Among the nonsensitive net-
works, it is thus expected that robustness to perturbation
will be further strengthened if they are closer to normal,
which is a phenomenon previously identified in fluid and
drive-response systems [16,17].

The experimental results presented here verify that in a
network of diffusively coupled oscillators the rate of con-
vergence to synchronization depends nonmonotonically on
the number of links. Our study also predicts and experi-
mentally demonstrates that, depending on the eigenvector
properties of the coupling matrix, cospectral networks can
exhibit qualitatively different convergence to synchroniza-
tion. We introduce the concept of sensitive and nonsensi-
tive networks, providing objective criteria for determining
the robustness of real networks.
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