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We experimentally demonstrate group synchrony in a network of four nonlinear optoelectronic

oscillators with time-delayed coupling. We divide the nodes into two groups of two each, by giving

each group different parameters and by enabling only intergroup coupling. When coupled in this fashion,

the two groups display different dynamics, with no isochronal synchrony between them, but the nodes in a

single group are isochronally synchronized, even though there is no intragroup coupling. We compare

experimental behavior with theoretical and numerical results.
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The past years have seen a vast increase in the interest in
coupled dynamical systems, ranging from a few coupled
elements to complex networks [1,2]. Besides the focus
on network structure and topology, the research area of
synchronization in networks has grown rapidly [3,4]. The
groundbreaking work on the master stability function
(MSF) by Pecora and Carroll has bridged the gap between
topology and dynamics by allowing predictions about syn-
chronization based solely on the nodes’ dynamics and the
eigenvalue spectrum of the coupling matrix [5].

While the MSF theory was originally developed
for identical, isochronous synchronization, more complex
patterns of synchronization are observed in applications in,
e.g., neural systems, genetic regulation, or optical systems
[6–15]. These patterns include, for example, sublattice
synchronization in coupled loops of identical oscillators
with heterogeneous delays [16], pairwise synchronization
of pairwise identical nodes coupled through a common
channel [17], and more general group synchronization
[18]. In group synchronization, the local dynamics in syn-
chronized clusters can be different from the dynamics in the
other cluster(s), which extends the possibility of synchro-
nization behavior to networks formed of heterogeneous
dynamical systems, as they appear in a variety of appli-
cations. Moreover, these synchronous patterns can be
observed even when there is no intragroup coupling.
Sorrentino and Ott have generalized the MSF approach to
group synchronization [18], and recent work by Dahms,
Lehnert, and Schöll considers time-delayed coupling of an
arbitrary number of groups [19].

In this Letter, we demonstrate the successful realization
of group synchronization of chaotic dynamics in an array of
four optoelectronic oscillators. Optoelectronic oscillators

with time-delayed feedback have been found to show a
multitude of different dynamical behaviors ranging from
steady-state to chaotic dynamics depending on parameters
[20–25]. In this work we experimentally demonstrate group
synchrony, where the two groups display different fluctua-
tion amplitudes. Remarkably, the synchronized oscillators
in one group are not directly coupled to each other; they are
coupled only to those of the other group.
The experimental setup consists of four optoelectronic

feedback loops, which act as the four nodes of the network.
We consider several coupling schemes. In the first one,
the nodes are coupled together in the configuration shown
in Fig. 1(a) in order to form two groups. There are no direct
coupling links between two nodes in the same group.
However, a node is coupled bidirectionally to both of the
nodes in the other group. In this experiment, the coupling
strength " and coupling delay � are the same for all cou-
pling links. However, the parameters of the nodes differ
depending on which group the nodes are in. Both of the
nodes in group A are identical, and both of the nodes in
group B are identical, but the nodes in group A are not
identical to the nodes in group B. In Fig. 1(a), the coupling
links are shown in black (arrows in each direction to indi-
cate bidirectional coupling), and the self-feedback of the
nodes is indicated by the gray (colored) lines and arrows.
A schematic of a single node is shown in Fig. 1(b),

where red lines indicate optical fibers, and black or green
lines indicate electronic paths. In each node, light from a
diode laser passes through a Mach-Zehnder modulator
(MZM), whose output light intensity is cos2ðxþ�0Þ for
an input voltage signal x. There is a controllable bias phase
of the MZM, which we set to be �0 ¼ �

4 . The optical

signal is split into three equal signals: One is the feedback

PRL 110, 064104 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

8 FEBRUARY 2013

0031-9007=13=110(6)=064104(5) 064104-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.110.064104


signal, and the other two are the coupling to the two nodes
in the opposite group. A photoreceiver converts the feed-
back optical signal to an electrical signal, which is one of
the two inputs to the DSP (digital signal processing) board.
The incoming optical signals from the two nodes of the
other group are combined optically before a second photo-
receiver converts the composite coupled signal to an elec-
tronic signal, which is the second input of the DSP board.
The DSP board implements the feedback and coupling time
delays, which are the same for this experiment (�¼1:4ms),
and a diffusive coupling scheme. The feedback signal is
scaled by a factor of 1� ", while each incoming signal to
a node is scaled by a factor of "=nin, for the global coupling
strength " and the number of links incoming to a node, nin.
For the configuration shown in Fig. 1(a), nin ¼ 2 for all
nodes, but, in general, nin can be different for each node.
The feedback and coupled signals are summed on the DSP
board.

The DSP board also implements a digital filter, which
is a two-pole bandpass filter with cutoff frequencies at
100 Hz and 2.5 kHz and a sampling rate of 24 kSamples/s
and also scales the combined signal by a scale factor,
which controls the feedback strength, which we denote
as �. The output of the DSP board is amplified with a

voltage amplifier, whose output drives the MZM. Although
� is a combination of gains of the photoreceiver, amplifier,
and other components, the DSP board is the only place
where the gain is changed.
For this experiment, all parameters except for � are

identical in all four nodes. We keep � identical among
the members of each group but allow a different � for each

group, denoted by �ðAÞ and �ðBÞ. Previous studies have
revealed the wide variety of behaviors that are possible for
this type of system, depending on the value of � [22].
For this study, we have used a range of� from 0 to 10, with
the experiments focusing on cases of �> 3, for which the
system displays chaos (with some periodic windows) when
the nodes are not coupled.
For each run of the experiment, the nodes are started

from random initial conditions. This system has a time
delay, so the initial condition will be a function of time.
Thus, we record the random electrical activity at the input
to the DSP in the absence of coupling and feedback for 1 s
to provide the initial states for the nodes. After recording
an initial condition, we enable feedback for 4 s, which is
long enough for transients to disappear. At the end of this
period, we enable coupling. Data are taken after transients
have died out.
The system of coupled feedback loops can be well

described by a mathematical model with a system of
time delay differential equations for the voltages input to

theMZMs xðmÞ
i 2 R and the vectors describing the states of

the filters uðmÞ
i 2 R2 [22]:

_uðmÞ
i ðtÞ ¼ EuðmÞ

i ðtÞ � F�ðmÞcos2½xðmÞ
i ðt� �Þ þ�0�; (1)

xðmÞ
i ðtÞ ¼ G

�
uðmÞ
i ðtÞ þ "

X
j

KðmÞ
ij ½uðm0Þ

j ðtÞ � uðmÞ
i ðtÞ�

�
; (2)

where m and m0 � m denote the groups A or B, respec-
tively, and i indicates the node within a group.

E ¼ �ð!H þ!LÞ �!L

!H 0

 !
;

F ¼ !L

0

 !
;

and

G ¼ 1 0
� �

are constant matrices that describe the filter. The filter
parameters are chosen as !L ¼ 2�� 2:5 kHz and !H ¼
2�� 0:1 kHz. For a bipartite network with no intragroup
coupling, we define the intergroup coupling matrices

KðmÞ ¼ fKðmÞ
ij g:

K ¼ 0 KðAÞ

KðBÞ 0

 !
; (3)
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FIG. 1 (color online). (a) Schematic of four nodes separated
into two groups, A (red, solid line) and B (blue, dashed line).
(b) Experimental setup of a single node, showing coupling to the
other nodes according to the configuration in (a).
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where K is the overall coupling matrix for the entire net-
work. For the configuration shown in Fig. 1(a), i, j ¼ 1, 2,
and

KðAÞ ¼ KðBÞ ¼ 1

2

1 1

1 1

 !

so that

K ¼ 0 KðAÞ

KðBÞ 0

 !
¼ 1

2

0 0 1 1

0 0 1 1

1 1 0 0

1 1 0 0

0
BBBBB@

1
CCCCCA: (4)

Equations (1) and (2) can describe the dynamics of the
uncoupled nodes if we set the coupling strength " ¼ 0, as
the second term in Eq. (2) represents the diffusive coupling
scheme.

Numerical simulations use a discrete-time implem-
entation of these differential equations, as described in
Ref. [22]. The simulations of uncoupled and coupled sys-
tems are in excellent agreement with the experimental
results for the variety of dynamical behaviors that can be
observed.

We will now investigate the existence and stability
of the group synchronous solution; i.e., we will derive
analytical conditions determining whether such a solution
(in which the two nodes of each group are identically and
isochronously synchronized, but there is no identical syn-
chrony between nodes of different groups) exists for given

values of �ðAÞ and�ðBÞ, and if it does, whether that solution
is stable. We use the approach described in Refs. [18,19].
The condition for the existence of the group synchronous
solution for a particular coupling configuration is that

X
j

KðmÞ
ij ¼ cðmÞ; m ¼ fA; Bg; (5)

i.e., that the row sum of the matrices KðmÞ is constant. For
the work reported here, we fix cðAÞ ¼ cðBÞ ¼ 1.

The group synchronized dynamics for group m is
given by

_uðmÞ
s ðtÞ ¼ EuðmÞ

s ðtÞ � F�ðmÞcos2½xðmÞ
s ðt� �Þ þ�0�; (6)

xðmÞ
s ðtÞ ¼ GfuðmÞ

s ðtÞ þ "½uðm0Þ
s ðtÞ � uðmÞ

s ðtÞ�g: (7)

Linearizing Eqs. (1) and (2) about the synchronous

solution uðmÞ
s (m ¼ A, B), we obtain the master stability

equations:

� _uðmÞðtÞ¼E�uðmÞðtÞ�F�ðmÞ sin½2xðmÞ
s ðt��Þþ2�0�

�G½ð1�"Þ�uðmÞðt��Þþ"�uðm0Þðt��Þ�: (8)

In Eq. (8), � is a parameter that is chosen from the
eigenvalue spectrum ofK. The largest Lyapunov exponent
as a function of this parameter � is called the MSF. For the

configurations presented here, the nonzero eigenvalues
of K are 1 and �1, and any remaining eigenvalues are
zeros. Moreover, the stability results will be identical for
any two-group network whose nodes are described by
Eqs. (1) and (2) and whose coupling matrix is in the
form of (3), satisfies (5), and has identical rows for either

KðAÞ orKðAÞ (for a proof, see Supplemental Material [26]).
The eigenvalues � ¼ �1 and � ¼ 1 in the master stabil-

ity equation (8) correspond to perturbations parallel to the
synchronization manifold. The corresponding value of the
MSF determines the dynamical behavior inside the syn-
chronization manifold and is shown in Fig. 2(a) in depen-

dence on the parameters �ðAÞ and �ðBÞ. Negative, zero, and
positive values denote fixed-point, periodic, and chaotic
dynamics, respectively. Because of the inversion symmetry
of the MSF for two-group synchronization [18,19], the
MSF values are identical for � ¼ �1 and � ¼ 1.
Transverse stability of the synchronization manifold is

determined by using the eigenvalue � ¼ 0 in Eq. (8).
Figure 2(b) shows the largest Lyapunov exponent in the
transverse direction, which is negative for almost the entire

range of �ðAÞ and �ðBÞ that is shown, indicating that we
expect the group synchronous solution to be stable for most
parameters.
To observe group synchrony in this system, we select

dissimilar values of �ðAÞ and �ðBÞ, as shown by the black
dots in Fig. 2. The global coupling strength is chosen as

" ¼ 0:8. The experimental values for �ðAÞ and �ðBÞ were
adjusted by using the DSP board. The values of �ðAÞ and
�ðBÞ used in simulation were established by varying the
values close to the experimental values to find nearby
values which match best the dynamical behavior of the
experiments for uncoupled nodes, obtained from the
shape of the reconstructed attractor in phase space. Since

the values determined experimentally as �ðAÞ ¼ 7:6 and

�ðBÞ ¼ 3:3 are subject to measurement uncertainties, it is
not surprising that we find slightly different values in simu-

lation, i.e., �ðAÞ ¼ 7:66 and �ðBÞ ¼ 3:28. Comparison of
uncoupled and coupled time traces in experiment and simu-
lation is shown in the Supplemental Material, Fig. S1 [26].
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FIG. 2 (color online). Maximum Lyapunov exponent �max

as a function of �ðAÞ and �ðBÞ: (a) in the longitudinal directions
� ¼ �1 and (b) in the transverse direction � ¼ 0. White areas
correspond to �max ¼ 0. The black dot indicates values of �ðAÞ
and �ðBÞ used in this experiment.
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Figure 3 shows experimental and simulated time traces
of the coupled system. The simulated traces in Fig. 3(a)
show the behavior of any two-group system displaying
stable group synchrony according to Eqs. (6) and (7),
with the parameters we have used here. Figure 3(b) shows
experimental results for a system coupled according
to Fig. 1(a). These time traces show that there is identical,

isochronal synchrony between xðAÞ1 and xðAÞ2 , and between

xðBÞ1 and xðBÞ2 , but not identical synchrony between the

groups. Thus, this is an example of group synchrony.
We also performed experiments on two asymmetric four-
node configurations. These configurations were created by
removing links from the original structure of Fig. 1(a) while
preserving the constant row sum and eigenvalues (1,�1, 0,
and 0) of K, keeping all other parameters the same. Their
topologies and dynamics are shown in Figs. 3(c) and 3(d).
Because these schemes are also described by Fig. 2, they
also display group synchrony. In the experimental time
traces, there are slight differences between the two traces

of one group, due to the intrinsic experimental noise and
mismatch we expect in any real system. An example of a
larger network that displays the same behavior is presented
in the Supplemental Material, Fig. S2 [26].
To further examine the nature of the synchrony of this

system, we calculate the correlation functions of the ex-
perimental time traces, as shown in Fig. 4 for the topology
shown in Fig. 1(a). For two variables yðtÞ and zðtÞ, which
each have a mean of zero, we define the correlation func-
tion C as a function of time lag �t [27]:

Cð�tÞ ¼ hyðtÞzðtþ �tÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihy2ðtÞihz2ðtÞip : (9)

Figure 4(a) shows the autocorrelation functions for one
node in each group when the nodes are uncoupled. The

autocorrelation of xðAÞ1 shows only a peak at zero time lag,

which indicates chaotic dynamics, while the autocorrela-

tion of xðBÞ1 shows periodic dynamics, with correlation peaks
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at intervals of the time delay � ¼ 1:4 ms. In Fig. 4(b), we

show the cross-correlation functions of xðAÞ1 with xðAÞ2 and of

xðBÞ1 with xðBÞ2 for the coupled system, which confirms iden-
tical, isochronal chaotic synchronization between the two
nodes in a single group. Figure 4(c) shows the cross-
correlation functions between two nodes in different groups,
without and with coupling. The uncoupled case has no
correlation, as we expect, but the coupled case has a high
correlation peak at a lag of �t ¼ �1:4 ms. From this, we
can see that there is time-lagged phase synchrony between
the two groups, with the dynamics of group B leading the
dynamics of group A by the system delay �. However, the
amplitudes of fluctuations of the two groups are still different
after coupling, so there is no complete synchronization, and
we have an interesting situation of the simultaneous coex-
istence of intragroup isochronal identical synchrony and
time-lagged phase synchrony between the groups.

In conclusion, we have examined a four-node system
of nonlinear optoelectronic oscillators in the case where
there are two groups of nodes with dissimilar parameters.
Our experiments display the phenomenon of group syn-
chronization, and we analyze the stability of the group
synchronized solutions for chaotic dynamical states. It is
remarkable that, although the coupling is entirely between
the different groups and not within the groups, identical
isochronal synchronization within each group is induced by
this coupling, while the two groups are not mutually am-
plitude synchronized, as predicted by our stability analysis
using the generalized master stability function [18,19].
Thus the nodes of group B act as a kind of dynamical relay
[28] for the nodes of group A, and vice versa. These results
have been experimentally demonstrated with three cou-
pling configurations, and conditions for observing group
synchrony in other networks have been discussed.

Our observations go beyond previous work on sublattice
and cluster synchrony, where the experiments focused on
optical phase synchronization for coupled lasers without
self-feedback [9,10]. Group synchronization in larger net-
works is a significant challenge for future experimental
investigation.
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[7] C.M. González, C. Masoller, M. C. Torrent, and J. Garcı́a-
Ojalvo, Europhys. Lett. 79, 64 003 (2007).

[8] J. Kestler, W. Kinzel, and I. Kanter, Phys. Rev. E 76,
035202 (2007).

[9] Y. Aviad, I. Reidler, M. Zigzag, M. Rosenbluh, and
I. Kanter, Opt. Express 20, 4352 (2012).

[10] M. Nixon, M. Friedman, E. Ronen, A.A. Friesem, N.
Davidson, and I. Kanter, Phys. Rev. Lett. 106, 223901
(2011).

[11] A. Amann, A. Pokrovskiy, S. Osborne, and S. O’Brien,
J. Phys. Conf. Ser. 138, 012001 (2008).

[12] S. Pigolotti, S. Krishna, and M.H. Jensen, Proc. Natl.
Acad. Sci. U.S.A. 104, 6533 (2007).

[13] M.H. Jensen, S. Krishna, and S. Pigolotti, Phys. Rev. Lett.
103, 118101 (2009).

[14] C.-U. Choe, T. Dahms, P. Hövel, and E. Schöll, Phys. Rev.
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